Faculty Recruiting Support CICS

Few-Shot Natural Language Processing By Meta-Learning Without Labeled Data

18 Nov
Thursday, 11/18/2021 10:00am to 12:00pm
Virtual via Zoom
PhD Thesis Defense
Speaker: Trapit Bansal

Abstract: Humans show a remarkable capability to accurately solve a wide range of problems efficiently -- utilizing a limited amount of computation and experience. Deep learning models, by stark contrast, can be trained to be highly accurate on a narrow task while being highly inefficient in terms of the amount of compute and data required to reach that accuracy. Within natural language processing (NLP), recent breakthroughs in unsupervised pre-training have enabled reusable models that can be applied to many NLP tasks, however, learning of new tasks is still inefficient. This has led to research on few-shot learning, where the goal is to generalize to new tasks with very few labeled instances. Meta-learning, or learning to learn, treats the learning process itself as a learning problem from data with the goal of learning systems that can generalize to new tasks efficiently. This has the potential to produce few-shot learners that can accurately solve a wide range of new tasks. However, meta-learning requires a distribution over tasks with relevant labeled data that can be difficult to obtain, severely limiting the practical utility of meta-learning methods. In this dissertation, we develop methods to enable large-scale meta-learning from unlabeled text data and improve the few-shot generalization ability of NLP models.

We contribute methods that propose tasks synthetically created from unlabeled text, allowing for a large task distribution for meta-learning. This leads to rapid learning of new tasks by meta-learning from millions of self-supervised tasks and minimizes the train-test mismatch in few-shot learning by optimizing the pre-training directly for future fine-tuning with few examples. Since real world applications of NLP require learning diverse tasks with different number of classes, we first introduce an optimization-based meta-learning method that can learn from multiple NLP classification tasks with any number of classes. We then leverage the proposed self-supervised approach to create meta-training tasks, with diverse number of classes, and meta-train models for few-shot learning using this task distribution. This leads to better representation learning, learning key hyper-parameters like learning rates, can be combined with supervised tasks to regularize supervised meta-learning, and leads to accurate few-shot learning on a diverse set of NLP classification tasks. We further explore the space of self-supervised tasks for meta-learning by considering important aspects like task diversity, difficulty, type, domain, and curriculum, and investigate how they affect meta-learning performance. Our analysis shows that all these factors meaningfully alter the task distribution, some inducing significant improvements in downstream few-shot accuracy of the meta-learned models.

Our findings yield accurate and efficient meta-learning methods that improve few-shot generalization to diverse tasks and should enable many future applications of meta-learning in NLP, such as hyper-parameter optimization, continual learning, efficient learning, learning in low-resource languages, and more.

Advisor: Andrew McCallum

Join the Zoom Meeting