
MobilityFirst: A Mobility-Centric and Trustworthy Internet
Architecture

Arun Venkataramani, James F. Kurose
U. Massachusetts Amherst

Dipankar Raychaudhuri, Kiran Nagaraja
Rutgers U.

Suman Banerjee
U. Wisconsin-Madison

Z. Morley Mao
U. Michigan

ABSTRACT
MobilityFirst is a future Internet architecture with mobility
and trustworthiness as central design goals. Mobility means
that all endpoints – devices, services, content, and networks
– should be able to frequently change network attachment
points in a seamless manner. Trustworthiness means that
the network must be resilient to the presence of a small num-
ber of malicious endpoints or network routers. MobilityFirst
enhances mobility by cleanly separating names or identifiers
from addresses or network locations, and enhances secu-
rity by representing both in an intrinsically verifiable man-
ner, relying upon a massively scalable, distributed, global
name service to bind names and addresses, and to facilitate
services including device-to-service, multicast, anycast, and
context-aware communication, content retrieval, and more.
A key insight emerging from our experience is that a log-
ically centralized global name service can significantly en-
hance mobility and security and transform network-layer
functionality. Recognizing and validating this insight is the
key contribution of the MobilityFirst architectural effort.

Categories and Subject Descriptors
C.4.3 [Computer Systems Organization]: COMPUTER-
COMM. NETWORKS—Network Architecture and Design

Keywords
Mobility; security; global name service; network architecture

1. INTRODUCTION
The enormous success of the current Internet as well as

our deepened understanding of its strengths and weaknesses
have fueled recent research interest in clean-slate designs for
a next-generation Internet, informed by our collective expe-
rience but unencumbered by concerns of backwards compat-
ibility. Driven by this goal, and by the technology and usage
trends shaping today’s Internet, we have been working on
MobilityFirst, a future Internet architecture with mobility
and trustworthiness as central design goals.
To appreciate the need for mobility as a crucial top-level

design goal, one need only consider that smartphones alone
today far outnumber tethered Internet hosts. Although the
Internet has flexed remarkably to accommodate this growth,
its core architecture and protocols designed originally for
tethered hosts have hardly changed – a state of affairs that
is problematic for end users, operators, and application de-
velopers and threatens to stymie long-term growth and in-
novation. From a user’s perspective, the Internet fails to
satisfy seemingly straightforward expectations: a download

does not resume gracefully when moving from home to work;
a smartphone VoIP call does not seamlessly switch from
WiFi at home to LTE on the road; ad hoc mobile-to-mobile
communication can not be easily used to exchange infor-
mation when the infrastructure network is congested or un-
available. From a performance perspective, the Internet’s
TCP/IP protocol stack has been widely recognized as being
fragile in mobile and wireless network scenarios [8, 19]. From
an application developer’s perspective, the lack of architec-
tural support for seamless mobility necessitates additional
cloud-based infrastructure and redundant application-specific
workarounds. Mobile IP[21], a plausible mobility approach,
is based on a legacy cellular worldview that users have a
single network “home”, can be reached only via a contem-
poraneous IP path, are connected to a single network at any
time, require only host-to-host (rather than host-to-content)
communication, and move infrequently across networks.

Our position is that the Internet’s naming and addressing
architecture is in good part responsible for these problems
and has serious implications for its trustworthiness as well.
The Internet has been widely criticized for conflating iden-
tity and location by overloading an IP address to represent
both, which complicates mobility (single identity, changing
locations) and more so with multihoming (single identity,
multiple locations). Conflating identity and location also
makes it difficult to verify that an endpoint is indeed at
the claimed location making it easy to hijack or spoof ad-
dresses today – a problem that will only be exacerbated
with frequent mobility of billions of mobile devices across
many network addresses per day. More broadly, the Inter-
net’s core protocols, designed originally with benign users
in mind, are vulnerable to abuse. For example, a single mis-
configured router can render large portions of the Internet
unreachable. The lack of verifiable endpoint and network
identifiers makes it harder to account for adversarial behav-
ior in protocol design and is at the root of a number of
security, privacy, and DDoS vulnerabilities.

An important design decision in MobilityFirst that helps
achieve the synergistic goals of mobility and security is a
clean separation of names and network addresses and the
use of a massively scalable global name service (GNS) to
dynamically bind names and addresses. In addition to en-
abling seamless mobility, this separation also enhances se-
curity, as it allows names and addresses to be defined as
globally unique identifiers (GUIDs) that are verifiably de-
rived from public keys and are robust to hijacking or spoof-
ing. This GUID-based communication assisted by the GNS
forms MobilityFirst’s “narrow waist” and is sufficiently flex-

ible to accommodate a variety of endpoint principals in-
cluding interfaces, devices, users, services, content, context-
aware descriptors (e.g., “pedestrians on the UMass cam-
pus”) and location-independent communication primitives
such as device-to-device, device-to-service, content retrieval,
context-aware delivery, multicast, anycast, and more.
A key architectural insight that has emerged through our

design and implementation effort is that a logically central-
ized global name service can significantly enhance mobility,
security, and rich network-layer functionality. We had orig-
inally viewed the GNS as primarily a distributed resolution
infrastructure (similar in spirit to a next-generation DNS)
to enhance mobility. However, we have since come to real-
ize that, architecturally, a fast, secure, logically centralized
GNS can transform how network-layer functionality is im-
plemented (as detailed in §2). We have prototyped and eval-
uated key MobilityFirst elements in a combination of wide-
area testbeds, and have also conducted evaluations driven by
simulations, measurements, and theoretical analyses; these
and more realistic field trial plans are outlined in §3.

2. MOBILITYFIRST ARCHITECTURE
In this section, we first describe the key elements of Mobil-

ityFirst that show how the GNS is critical to enhancing mo-
bility, security, and several other network-assisted functions,
including routing, context-aware group communication, and
content retrieval. This functional overview sets the stage for
the requirements and the design of the GNS itself (§2.3).

2.1 Basic communication abstraction
The core primitive enabled by MobilityFirst is communi-

cation with location-independent and verifiable names. For
example, an application can invoke connect(service_name)
or get(content_name) or message(group_name) to commu-
nicate with the named arguments without worrying about
their (changing) location(s) or impersonation by malicious
entities. We begin with an overview of naming and address-
ing to help appreciate this communication abstraction.

2.1.1 Naming and addressing
A name in MobilityFirst is a globally unique identifier

(GUID) that can be used to identify a variety of principals
such as an interface, a device, a service, a human end-user,
content, or (recursively) a collection of GUIDs.
Self-certifying identifiers. A GUID is self-certifying,

i.e., any principal can authenticate another principal claim-
ing a GUID without the need for third-party certification.
A self-certifying GUID is derived simply as a one-way hash
of a public key, so a GUID can be authenticated using a
simple, bilateral challenge-response procedure that does not
require an external certification authority.
The bilateral challenge-response works as follows. Sup-

pose a principal X (say, a router) wants to authenticate an-
other principal Y (say, a destination), i.e., X wants to verify
that Y is indeed the rightful owner of the GUID Y . Then,
X issues a challenge by sending a random nonce n to Y .
Y is expected to respond with [K+,K−(n)], where K+ is a
public key and K−(n) is the nonce encrypted using the cor-
responding private key. Upon receiving the response, X first
checks that H(K+) = Y , where H(.) is a well-known one-
way hash function, and then checks that K+(K−(n)) = n.
If both checks pass, then X has authenticated Y .

In addition to a GUID, it is convenient to assign a princi-
pal an optional human-readable name (e.g., “John Smith’s
cell phone”) or an inexact intent (e.g., a set of search key-
words or other abstract descriptions). To this end, a name
certificate binds the human-readable name or intent to a
public key. Endpoints wanting to securely communicate us-
ing human-readable names must thus first obtain a certifi-
cate from a trusted a certification authority.

Network addresses. A network address (NA) is a self-
certifying identifier for a network, i.e., an autonomous collec-
tion of interconnected devices that act as intermediate for-
warders of traffic sourced by or destined to GUIDs attached
to any device in the collection. An NA most naturally cor-
responds to an autonomous system in today’s parlance, but
could also be used to identify finer-grained collections such
as a subnet or one or more base stations or coarser-grained
collections such as an Internet Service Provider. A GUID is
said to be attached to an NA if it is directly connected to
one or more forwarding devices in the NA.

2.1.2 End-to-end communication
The GNS enables end-to-end communication by mapping

endpoint identifiers (GUIDs or human-readable names) to a
flexible set of attributes including but not limited to their
network addresses. Thus, the GNS subsumes a name cer-
tification service that resolves a human-readable name to a
GUID and a name resolution service that resolves a GUID
to its attributes (with more details deferred to §2.3).

To contact a GUID, a sending endpoint queries the GNS
to obtain an NA corresponding to a GUID (much like it
queries DNS to obtain an IP address for a domain name)
before sending the first packet to the destination. The tuple
[GUID, NA] is a routable destination identifier carried in
packet headers. Senders can also send a packet addressed
just to a GUID, thereby implicitly delegating to the first-hop
router the task of querying the name service for an NA.

End-to-end packet forwarding is accomplished in two steps,
first by an internetwork and then by an intranetwork routing
protocol. The internetwork routing protocol is responsible
for delivering packets to the destination NA in the packet
header (oblivious of the destination GUID). Once the packet
reaches the destination NA, an intranetwork routing proto-
col involving routers in NA is responsible for delivering the
packet to the GUID. As in today’s interdomain Internet,
each NA can independently choose its intranetwork routing
protocol. As GUIDs can not encode any information about
network location, the intranetwork routing protocol must be
capable of routing on flat identifiers.

2.2 Enhanced network functions
Next, we describe several important functional compo-

nents of MobilityFirst–(1) endpoint mobility, (2) scalable
routing, (3) context-awareness, (4) content retrieval, and
(5) evolvability–that are enabled or assisted by the GNS.

2.2.1 Handling endpoint mobility
The GNS-driven end-to-end communication as above im-

plicitly enables only pre-lookup mobility, which suffices if
endpoints rarely change network addresses. However, when
mobility is the norm, three other types of mobility, as shown
in Figure 1, must be handled. Connect-time mobility is when
a destination B moves after the initiator A’s query but before
before a connection has been mutually established through

Global	 name	 service	 A,	 IP0	 B,	 IP1	

B,	 IP2	

1)	 Pre-‐lookup	 	
mobility	

B	

IP2	

B,	 IP2	

connect(B,	 IP2)	
B,	 IP3	 B,	 IP3	

2)	 Connect-‐Ame	
mobility	

X	
Timeout	

B	

IP3	
connect(B,	 IP3)	

Connec,on	 established	

B,	 IP4	

3)	 Individual	
mobility	 Connec,on	 re-‐synchronized	

B,	 IP5	 A,	 IP6	

4)	 Simultaneous	
mobility	 B,	 IP5	 B	

IP5	 connect(B,	 IP3)	
Connec,on	 re-‐synchronized	

Timeout	

Tim
e-‐
to
-‐co

nn
ec
t	

Figure 1: Four kinds of mobility (1) Pre-lookup,
(2) Connect-time, (3) Individual, (4) Simultaneous,
three of which require a global name service.

a three-way handshake. Individual mobility refers to either
(but not both) of the endpoints moving after a connection
has been established. Simultaneous mobility is when an end-
point moves mid-connection after the other endpoint has
moved but before it could re-synchronize the connection.
Three of the four types of mobility have to rely on the

GNS; only individual mobility can be handled in a purely
bilateral manner. We also note that although prior work
on connection migration [25, 6] often considers simultane-
ous mobility to be a rare case, it can be pretty common in
disruption-tolerant mobile app scenarios and does not re-
quire both endpoints to change their addresses “simulta-
neously”, e.g., when a mobile user stops watching a video
on her phone using the cellular network and then resumes
watching it after a few hours using a WiFi network, by which
time the virtual machines hosting the video server in the
cloud has been migrated for load balancing.

2.2.2 Scalable routing and network mobility
The internetwork routing protocol enables reachability to

NAs much like the current Internet enables reachability to
IP prefixes. Thus, the number of forwarding table entries in
a core router is commensurate to the total number of NAs.
As the number of NAs may grow significantly over time
(e.g., home networks, vehicular networks, body area net-
works, etc.), the internetwork routing protocol is designed
to support a small number of levels of hierarchy so as to
trade off packet header space against forwarding table size.
Our candidate internetwork routing design, core-edge rout-
ing supports a two-level hierarchy with networks explicitly
designated as core or edge networks.
A core network router only maintains forwarding entries

for other core networks and a small number of their “cus-
tomer” edge networks. An edge network router maintain for-
warding entries only for a small number of their “provider”
core networks and edge networks in their vicinity. The name
service enables the two-level interdomain routing protocol by
resolving a GUID to a two-tuple [X,T] (instead of a single
NA), where X is the most downstream core network enroute
to GUID and T is the terminal network to which the GUID
is attached. An edge network need not be directly connected
to a core network, however, it must ensure that at least one
core network agrees to maintain forwarding state for it.
Like endpoint mobility, the GNS also facilitates network

mobility wherein a network as a whole moves across loca-
tions, e.g., when vehicular or body-area networks physically
move and connect to different access networks. The details

of network mobility as well as other candidate internetwork
routing protocols (e.g., edge-aware interdomain routing or
EIR) are described in longer papers [28, 29].

2.2.3 Context-aware communication
A key primitive enabled by the GNS in MobilityFirst is

context-aware communication, or the ability to communi-
cate with endpoint principles identified by sophisticated,
attribute-based descriptions. Unlike the current Internet
that mainly provides a primitive to send data to an IP ad-
dress, context-aware communication allows an endpoint to
send (receive) data to (from) a dynamic set of endpoints
without explicitly managing or even knowing the member-
ship of the set. For example, in MobilityFirst, an application
can invoke send(message, "Taxis near TimesSquare") or
even bind a socket to such attribute-based descriptors.

Multicast is a simple instance of context-aware delivery.
A multicast GUID (MID) has the same format as a regu-
lar GUID and the resolved output of the name service has
the same format as multi-homed network address. However,
the name resolution and routinf differ as follows. The name
service maintains a membership set for each MID that con-
sists of all GUIDs subscribed to the multicast group. Each
member GUID i in MID subscribes to the group via a single
home, NAi. The name service resolves a MID by returning
the union of all NAi’s having at least one GUID subscribed
to the MID. By default, the sender is responsible for send-
ing data addressed to [MID,NAi] for each of the returned
NAi’s. When packets arrive at a destination NAi, the NAi

is responsible for resolving the MID to the subset of mem-
ber GUIDs attached to its network and forwarding a copy to
each member relying on the intranetwork routing protocol.

Context-aware delivery generalizes multicast to groups bas-
ed on attribute-based descriptors. The GNS’s support for
maintaining flexible attributes, not just network addresses,
using an extensible key-value interface is key to enabling
context-aware delivery. To enable geo-casting, for exam-
ple, each potential member must maintain its geolocation
([lat,long]) attribute and enable read privileges for potential
senders. In order to send a geocast message, the GNS cre-
ates on-demand a context-aware MID whose members are
all GUIDs matching the specified geolocation. The sub-
sequent message delivery is identical to multicast as de-
scribed above. Context-aware MIDs can also be created
using more sophisticated comparison and logical operators,
e.g., "type=’taxi’ and [lat,long] within [target_lat,

target_long, radius]" to send a geofenced message as in
the example above (with more details in §2.3 and §3).

2.2.4 Content retrieval and storage-aware routing
Content in MobilityFirst is a first-class endpoint princi-

pal and is named using self-certifying GUIDs like other end-
points but with some differences. First, unlike interface or
device GUIDs, a self-certifying content GUID is computed
as a one-way hash of the content itself, allowing any entity to
verify its integrity. Second, the GNS does not store state for
all content GUIDs as that would impose a prohibitively high
overhead on any GNS provider; instead, a routable content
address is encoded as a two-tupe [PID, CID], wherein CID
is the content GUID and PID is the publisher’s GUID. The
PID could either be a core or a terminal network itself or be
attached to one and the GNS and/or the interdomain rout-
ing protocol help route to the PID that should then serve the

CID. Endpoints can know of the [PID, CID] tuple to request
through several different means including hyperlinks in web
pages, or by connecting to a publisher’s web service by re-
solving a human-readable name like “www.nytimes.com”.
The GNS’s support for indirection (§2.3) is convenient to
translate all requests to PID1 to PID2 instead (similar in
spirit to CNAME aliasing today) in order for a content pro-
ducer PID1 to delegate content distribution to a CDN PID2.
Storage-aware routing. Storage-aware routers support

opportunistic caching and retrieval of content that helps
contain demand for popular content close to the edge. A
storage-aware router can intercept a request for a CID if it
has a copy of that content stored locally and serve the con-
tent to the requesting endpoint. Note that a storage-aware
router or an edge network can unilaterally enable support
for opportunistic content caching and retrieval without coor-
dinating with the publisher or other routers or networks, as
the requesting endpoint can verify the content based on the
CID alone. We also emphasize that not all routers need be
storage-aware; indeed recent studies have shown that oppor-
tunistic edge caching alone suffices [24, 13] to achieve much
of the benefit of path-caching advocated by more content-
centric network architectures [2].
Block transport. Storage-aware routing combines well

with block transport, MobilityFirst’s network-assisted trans-
port alternative to today’s end-to-end TCP. Block transport
transfers blocks, or large chunks of contiguous data (possibly
entire files), as opposed to small packets in a per-hop-reliable
manner, which significantly enhances performance, fairness,
and disruption-tolerance in mobile settings. A detailed de-
sign and implementation of a block transport protocol, Hop,
is described here [19]. MobilityFirst generalizes Hop to work
with segments (i.e., a continuous set of links with storage-
aware routers at each end) instead of single-link hops.

2.2.5 Evolvable compute layer
MobilityFirst supports a computing layer for evolvability,

wherein network service providers either themselves provide
value-added services to their end-users, or enable an open
platform where third-party services (e.g., transcoding, onion
routing, etc.) validated by the network provider can register
and be co-deployed at designated provider PoPs. Compute
plane services so deployed can either be located explicitly
by endpoints or network intermediaries through their GUID
registered in the GNS or opportunistically when an on-path
router supports the requested service. By enabling deploy-
ment of in-network compute services in a virtualized envi-
ronment, MobilityFirst allows for new network services to
be quickly rolled out without impacting the fast forwarding
path or legacy traffic that does not need the new services[11].

2.3 GNS requirements and design overview
A natural question raised by the central role of the GNS

in MobilityFirst is: can we build a practical GNS that can
deliver on the expectations? Much of the expected function-
ality boils down to one key distributed systems challenge:
ensuring that any endpoint or router gets the look and feel
of a high-availability name service that is nearby (≈ few mil-
liseconds) and rapidly returns up-to-date responses.
A more complete set of design goals is as follows.
(1) Time-to-connect: The design must ensure low laten-

cies for name lookups to return up-to-date values, which
determines the time to connect to a destination when the

value being queried for is a network address.
(2) Resource cost: The design must ensure low replication

cost. A naive way to minimize lookup latencies is to replicate
every name record at every available location, however high
mobility implies high update rates, so the cost of pushing
each update to every replica would be prohibitive.

(3) High availability: The design must be resilient to fail-
ures including disasters impacting an entire datacenter, and
(by consequence) also prevent crippling load hotspots.

(4) Security: The design must be robust to malicious user
behavior such as hijacking or corrupting name records. The
design must support flexible access control policies to ensure
the desired privacy of name records.

(5) Federation: The design must allow different name ser-
vice providers to co-exist and users to freely choose providers.

(6) Extensibility: The design must be extensible to a rich
set of attributes associated with a name and resolution poli-
cies to enable new group communication primitives.

2.3.1 Auspice GNS design overview

TLD	
name	
service	

Auth.	
name	
service	

Root	 name	 service	 (ICANN,	
US.	 Dept.	 of	 Commerce)	

Managed	
authoritaBve	
DNS	 service	

CerBficate	
search	
service	

Auspice	
global	 name	
service	

Jo
hn

	 Sm
ith

’s	
ph

on
e	

GUID=X,	 GNS=Auspice	 	

Domain	 name	 system	 Global	 name	 system	

3	

3	

4	

4	

Hierarchical	 names	 with	
federa@on	 @ghtly	 bound	 to	
name	 structure	

Arbitrary	 human-‐readable	 names	
and	 flat	 GUIDs	 with	 federa@on	 by	
indirec@on	 via	 cer@fica@on	 services	

1	

0	

Local	 name	
service	

1	

Local	 name	
service	

2	
Name	
cerBficaBon	
service	

Figure 2: DNS vs. GNS: Auspice can be deployed sim-

ilar to a managed DNS provider today (left) so as to

provide name resolution service for its customer GUIDs

(right). Name certification services (say Verisign) bind a

human-readable name to a GUID and its GNS provider,

and certificate search services (say Google) can help in-

dex and distribute certificates from all certification ser-

vices. Solid (dotted) lines represent frequent (infre-

quent) query paths for a given mobile destination. Ex-

cept for the tightly controlled DNS root service, all ser-

vices above are designed to be purveyed competitively.

To address the above goals, we have developed Auspice,
a GNS decribed below that is designed as a massively geo-
distributed key-value store for name resolution. We have
also designed and implemented an alternative in-network
GNS, DMap [30] (along with the associated service API [9]),
that provides an in-network DHT scheme to map a self-
certifying identifier to a fixed number of resolver locations,
with clients choosing the closest mapped resolver. Below,
we explain the Auspice design in detail.

Geo-distribution is essential to the latency and availabil-
ity goals while the key-value design enables extensibility in
Auspice. Each name record in Auspice is associated with
a globally unique identifier (GUID) that is also the record’s
primary key. A name record contains an associative array of
key-value pairs as shown, wherein each keyKi is a string and
the value Vi may be a string, a primitive type, or recursively
a key-value pair.

GUID | K1, V1 | K2, V2 | · · ·
Loosely speaking, the human-readable alias is analogous

to a DNS domain name and a name record to a zone file,
but with the following important differences from DNS.

Figure 3: Geo-distributed name servers in Auspice.
Replica-controllers decide placement of active repli-
cas and active replicas handle requests from end-
users. N1 is a globally popular name and is repli-
cated globally; name N2 is popular in select regions
and is replicated in those regions.

Certification. As shown in Fig. 2, to initiate communi-
cation with a destination Y, an endpoint X must first obtain
a certificate of the form [JohnSmith1956:Phone1, Y, P]K−

that binds the human-readable alias to the GUID Y and its
GNS provider P, and is signed by the private key K− of
an NCS that X trusts. A certificate search service can help
index certificates from different NCSes, and help X find a
certificate from a trusted NCS as well as find the human-
readable alias based on keyword searches.
Federated trust. Unlike ICANN and root DNS servers

that respectively act as a single name adjudication author-
ity and root of trust, the design above decentralizes trust
across different NCS providers and potentially allows for
endpoints to use quorum-based approaches to resolve name
conflicts (or conflicting certificates). More importantly, the
federated design above allows for endpoints to select arbi-
trary human-readable names and NCS providers unlike DNS
that restricts domain names to be hierarchical and federa-
tion and the DNSSEC keychain to strictly follow the name
structure. An inevitable restriction of the above design is
that two endpoints can only communicate securely if they
share a trusted NCS provider, a design we argue is preferable
to and a generalization of the single root of trust model.
Extensibility. The design above cleanly separates the

GNS provider’s resource-intensive responsibility of name res-
olution under high mobility from the slow-changing certifi-
cation process. The key-value API enables an extensible
name record representation to enhance functionality while
ensuring security and privacy. By default, each top-level
key has associated read and write ACLs that could either
be a blacklist or whitelist of GUIDs that respectively have
read or write access. Thus, users can choose to enable geo-
cast capability (as in §2.2.3) only to emergency personnel or
potential customers using such ACLs.
Automated geo-replication. The key to achieving the

first three goals in Auspice is a demand-aware replication
engine that automatically decides for each GUID the num-
ber and locations of replicas of its name record based on
its lookup rate, update rate (mobility or attribute changes),
geo-distributed pattern of lookup demand, and global sys-
tem capacity. The placement engine consists of replica con-
trollers (themselves replicated using Paxos) that proactively
create replicas (not passive cached copies) of name records
close to their pockets of demand so as to optimize time-to-
connect latency and resource cost. Figure 3 illustrates its
design with more details deferred to the Auspice paper [23].

Figure 4: GENI testbed, showing deployment of
MobilityFirst naming and routing prototypes.

2.4 Trustworthiness discussion
Our position is that easily verifiable identifiers go a long

way towards addressing the Internet’s security vulnerabil-
ities. The GUID-based communication abstraction is Mo-
bilityFirst’s thin waist. Unlike IP addresses, GUIDs and
NAs can not be hijacked or spoofed and can be verified in
a purely bilateral manner. The GNS itself further fortifies
security and privacy through the use of flexible ACLs and
support for pseudonyms for anonymous online transactions.
The massive replication and federation of name certification
as well as name resolution in the GNS implies a very high
resource cost for an adversary to exhaust GNS resources
through DDoS attacks.

The support for in-network content storage and retrieval
means that static (named) content is resistant to flash floods.
Intrinsic support for disruption-tolerance through block trans-
port means that end-to-end communication will continue de-
spite the absence of a contemporaneously connected path.
At the interdomain level, self-certifying NAs achieve similar
security guarantees as S-BGP but without relying on a PKI
in the common case [5]. Finally, verifiable identifiers sim-
plify the deployment of many proposals based on filtering
and/or capabilities to alleviate network-layer DDoS attacks
in MobilityFirst compared to the current Internet.

3. PROTOTYPING AND EVALUATION
To evaluate the MobilityFirst architecture, we have built

multiple prototypes of its key components including the global
name service, routing and forwarding engine, a virtualized
compute layer, and an endhost socket library. Although our
effort has been driven by a clean-slate design process, we be-
lieve it is important to identify a realistic deployment path
for the architecture to be successfully adopted, so we have
emphasized incremental deployability of key components in
our prototyping and field trial efforts.

Auspice and msocket. We have implemented a full-
featured prototype of Auspice as described above and have
been internally using an Amazon EC2 deployment for re-
search purposes for many months now [23]. We have also de-
veloped msocket, an endpoint socket library that interoper-
ates with Auspice and is similar to the BSD API but with (1)
intrinsic support for mobility and multihoming (e.g., main-
taining a persistent connection despite moving across differ-
ent vertical networks), (2) multipath transport, (3) mobile-
to-mobile communication despite the presence of address-
translating or (unidirectional) firewalling middleboxes, and
(4) context-aware application development, e.g., an API that
allows an app to invoke msocket.bind(lat, long, radius)

for geofenced messaging.
Auspice and msocket can also be used on top of today’s

Internet (with IP addresses instead of self-certifying NAs)
and offer the first scalable solution for seamlessly handling
all four types of mobility (§2.2.1). Some evaluation high-
lights (refer [23, 31] for details) are as follows:
(1) Auspice and msocket enable recovery from both indi-
vidual and simultaneous mobility in ≈2 RTTs after both
endpoints are back online.
(2) Compared to best-of-breed, commercial DNS providers
today, Auspice yields significant cost and/or performance
gains even for today’s read-dominated (hardly mobile) names.
(3) Under high mobility, with a geo-distributed deployment
of just hundred nodes, Auspice can resolve queries within
median and 95th percentile latencies of 20ms and 80ms resp.,
outperforming state-of-the-art alternatives based on DHT
replication by up to an order of magnitude. For a broader
evaluation of endpoint and content mobility approaches in
MobilityFirst as well as alternate architectures, see [14]
Forwarding and routing. We have implemented two

prototypes of the MobilityFirst forwarding plane, the first
based on a more traditional distributed control plane using
Click, and a second based on a logically centralized con-
trol plane using an SDN-capable router using OpenFlow
and OpenDayLight. Both prototypes also implement hop-
by-hop segmented transport [19] and storage-aware routing
protocols [20, 27] that are robust to changes in network con-
ditions. On a commodity AMD quad-core 2.3GHz machine
with 4GB RAM, we have been able to achieve line rates
for GUID,NA forwarding of 700Mbps and close to 1Gbps
respectively with the Click and SDN based routers. As ex-
pected, the performance is much slower with the SDN-based
router when late binding via a GNS lookup is involved, and
techniques to optimize the controller switch interface to bet-
ter support late binding are part of ongoing work. Addition-
ally, we have implemented the core-edge interdomain rout-
ing protocol integrated with a scalable, intradomain GUID-
routing protocol based on Seattle [17], and the edge-aware
interdomain routing protocol mentioned in §2.2.2.
Field trials. For a holistic validation of the Mobility-

First architecture, we also have three distinct real-world tri-
als planned for the next phase of the MobilityFirst project
–a mobile data services trial with a wireless ISP (5Nines)
in Madison, WI; a content production and delivery net-
work trial involving several public broadcasting stations in
PA connected by a green-fields optical network called Pen-
nREN; and a public service weather emergency notification
system (CASA) with end-users in the Dallas/Fort Worth
area. These field trials are expected to provide further val-
idation of the MobilityFirst protocol stack and and real-
world insights into its usability for developing advanced mo-
bile, content, context and cloud applications.

4. RELATED WORK
MobilityFirst synthesizes ideas from a large body of prior

work so as to realize a holistic Internetwork architecture
with mobility and security as central design goals. Our
novel, high-level contribution is to recognize and validate
the insight that a logically centralized global name service
can significantly enhance mobility, security, and a number
of rich network-layer functions, which to our knowledge has
not been done before. Below, we compare MobilityFirst to
a few other representative network architectures.
Handling mobility. Existing approaches to handle mo-

bility can be broadly classified in three categories: (1) in-

direction, (2) global name resolution, (3) name-based rout-
ing. Indirection approaches, e.g., MobileIP [21], LISP[4],
i3[26], GSM, route to a fixed network address, the home
address, and a home agent router tunnels all data packets
to the mobile’s current location. Indirection schemes en-
able seamless mobility of one or both endpoints at any time
and are oblivious to non-mobile endpoints, but as a conse-
quence have to route all data through the home agent exac-
erbating path inflation. Global-name-resolution-based ap-
proaches, e.g., HIP[16], LNA[7], XIA[15] rely on a logically
centralized service such as DNS or Auspice[23] that resolves
an endpoint identifier to its network location(s). This ap-
proach requires a lookup to the name service at connection
initiation time and in order to handle simultaneous (but not
individual) mid-session mobility, but does not suffer from
data path inflation. Pure name-based routing approaches,
e.g., ROFL[10], TRIAD[12], NDN[2], eschew network loca-
tors and route directly on flat or structured names. This ap-
proach in theory allows any mobility to be completely seam-
less to endpoints, but in practice can induce outage times
commensurate to convergence delays for routing unless they
additionally rely on indirection or global name resolution.

Compared to HIP, an endpoint stack that pioneered self-
certifying host identifiers, MobilityFirst is a network archi-
tecture with a number of additional conceptual and func-
tional elements. MobilityFirst uses self-certifying identi-
fiers not only for endpoints but also for network addresses
and content (similar in spirit to AIP[5] and XIA). Mobility-
First features such as network mobility, disruption-tolerant
transport, in-network content storage and retrieval, context-
aware communication, and compute layer all require network-
layer support that is absent in an endpoint architecture. A
narrow view might compare HIP to a stripped-down version
of MobilityFirst interoperable with today’s routers,. But
that view would miss the architectural centrality of Mobil-
ityFirst’s GNS, which is philosophically distinct from HIP
that relies on the DNS, a three-way update signaling mech-
anism to handle mobility of endpoints, and “rendezvous
points” to handle the rare case of simultaneous mobility.

Like MobilityFirst, the XIA future Internet architecture
[15] also advocates self-certifying identifiers and network
locations and both architectures use them to represent a
variety of principals. For evolvability, XIA represents ad-
dresses as a directed acyclic graph of self-certifying iden-
tifiers, wherein DAG paths correspond to possible “source
routes” to reach the destination. In comparison, Mobility-
First is designed with more explicit support for mobility-
centric services while keeping addresses and packet headers
simple. Extensible functionality comes from the support for
indirection, grouping, attribute-based lookups ivia the GNS
and late binding at routers.

Both MobilityFirst and NDN [2] leverage opportunistic
caching and retrieval of content via storage-aware routers.
Neither requires every router to be storage-capable, which
aligns well with recent studies [13, 24] showing that much
of the benefit of on-path caching can be obtained by just
caching close to the edge. However, an important difference
is that, unlike MobilityFirst, NDN begins by eschewing net-
work locators (like IP addresses or NAs) altogether opting
instead to route directly over a hierarchically organized con-
tent name space. Our position is that while the approach is
well suited to consumption of content that is highly aggre-
gatable and moves infrequently, it faces scalability challenges

under high mobility. Enabling device-to-device or service-to-
device communication with billions of devices moving across
tens of network locations a day necessitates augmenting a
pure name-based approach with indirection or a global name
service, as also recognized by the NDN effort [3].
DNS vs. GNS. Until the early 80s, the Internet relied

on a centrally maintained HOSTS.TXT text file for name reso-
lution. The DNS arose in response to the rapidly increasing
size of the file and the cost of distributing it. Mockapetris
and Dunlap point to TTL-based caching to reduce load and
response times as a key strength, noting that “the XEROX
system [Grapevine [22]] was then ... the most sophisticated
name service in existence, but it was not clear that its heavy
use of replication, light use of caching ... were appropriate”.
We have since come a full circle, turning to active replication
in Auspice in order to address the challenges of mobility, a
concern that wasn’t particularly pressing in the 80s. Com-
pared to classical systems like Grapevine or ClearingHouse,
Auspice supports automated, demand-aware placement of
replicas and, through its support for context-aware delivery,
is a step towards addressing some of the challenges to which
Lampson alludes on representing “descriptive names” [18].

5. CONCLUSIONS
We overviewed MobilityFirst, a future Internet architec-

ture with mobility and security as central design goals. Mo-
bilityFirst enables seamless mobility through a clean separa-
tion of names and addresses and enhances security by repre-
senting them using intrinsically verifiable identifiers. A key
component of MobilityFirst that makes this approach prac-
tical is a geo-distributed, massively scalable global name ser-
vice that rapidly resolves names to flexible attributes. More
importantly, the deeper insight that has emerged from this
effort is that a logically centralized global name service can
significantly enhance not only mobility and security but a
number of other network-layer functions. Our main contri-
bution is to recognize and validate this insight, an endeavor
that is made possible because of our improved understand-
ing of fielding massive-scale distributed systems and neces-
sitated by the explosive growth of mobile applications. The
MobilityFirst effort is still ongoing and we welcome feed-
back from the community. More details are available at [1],
including an app developer portal at http://gns.name.

Acknowledgement. This research was supported in part
by the US National Science Foundation awards CNS-1040781,
CNS-1040735, CNS-1039657, and CNS-1040648. We thank
the rest of the MobilityFirst team and participants at NSF-
FIA meetings for shaping the ideas in this paper.

6. REFERENCES
[1] MobilityFirst:. http://mobilityfirst.cs.umass.edu/.
[2] Named data networking. http://www.named-data.net/.

[3] Personal communication at FIA meetings. http://www.
nets-fia.net/Meetings/Fall13/Agenda-fall-13.html.

[4] The Locator/ID Separation Protocol (LISP). RFC 6830.

[5] D. G. Andersen, H. Balakrishnan, N. Feamster,
T. Koponen, D. Moon, and S. Shenker. Accountable
Internet Protocol (AIP). ACM SIGCOMM, 2008.

[6] M. Arye, E. Nordstrom, R. Kiefer, J. Rexford, and M. J.
Freedman. A Formally-Verified Migration Protocol For
Mobile, Multi-Homed Hosts. In ICNP, 2012.

[7] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy,
S. Shenker, I. Stoica, and M. Walfish. A Layered Naming
Architecture for the Internet. In ACM SIGCOMM, 2004.

[8] A. Balasubramanian, B. Levine, and A. Venkataramani.
DTN Routing As a Resource Allocation Problem. In ACM
SIGCOMM, 2007.

[9] F. Bronzino, K. Nagaraja, I. Seskar, and D. Raychaudhuri.
Network service abstractions for a mobility-centric future
internet architecture. In ACM MobiArch Workshop, 2013.

[10] M. Caesar and T. Condie et al. ROFL: Routing on Flat
Labels. In ACM SIGCOMM., 2006.

[11] Y. Chen, B. Liu, Y. Chen, A. Li, X. Yang, and J. Bi.
PacketCloud: an Open Platform for Elastic In-network
Services. In ACM MobiArch Workshop, 2013.

[12] D. R. Cheriton and M. Gritter. An architecture for content
routing support in the internet. In USENIX USITS, 2001.

[13] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, and
A. Ghodsi et al. Less Pain, Most of the Gain:
Incrementally Deployable ICN. In ACM SIGCOMM, 2013.

[14] Z. Gao, A. Venkataramani, and J. Kurose. Towards a
Quantitative Comparison of Location-Independent Network
Architectures. In ACM SIGCOMM, 2014.

[15] D. Han, A. Anand, F. Dogar, B. Li, H. Lim, M. Machado,
A. Mukundan, W. Wu, A. Akella, D. G. Andersen, J. W.
Byers, S. Seshan, and P. Steenkiste. XIA: Efficient Support
for Evolvable Internetworking. In USENIX NSDI, 2012.

[16] P. Jokela, P. Nikander, J. Melen, J. Ylitalo, and J. Wall.
Host Identity Protocol. In Wireless World Research, 2004.

[17] C. Kim, M. Caesar, and J. Rexford. Floodless in
SEATTLE: A Scalable Ethernet Architecture for Large
Enterprises. In ACM SIGCOMM, 2008.

[18] B. W. Lampson. Designing a global name service. In ACM
PODC, 1986.

[19] M. Li, D. Agrawal, D. Ganesan, and A. Venkataramani.
Block-switched Networks: A New Paradigm for Wireless
Transport. In USENIX NSDI, 2009.

[20] S. C. Nelson, G. Bhanage, and D. Raychaudhuri. GSTAR:
Generalized Storage-aware Routing for Mobilityfirst in the
Future Mobile Internet. In MobiArch Workshop, 2011.

[21] C. E. Perkins. Mobile IP. IEEE Comm., May 1997.
[22] M. D. Schroeder, A. D. Birrell, and R. M. Needham.

Experience with Grapevine: the growth of a distributed
system. ACM Trans. Comput. Syst., February 1984.

[23] A. Sharma, X. Tie, H. Uppal, A. Venkataramani,
D. Westbrook, and A. Yadav. A Global Name Service for a
Highly Mobile Internetwork. In ACM SIGCOMM, 2014.

[24] A. Sharma, A. Venkataramani, and R. Sitaraman.
Distributing Content Simplifies ISP Traffic Engineering. In
ACM SIGMETRICS, 2013.

[25] A. Snoeren and H. Balakrishnan. An End-to-End Approach
to Host Mobility. In ACM MOBICOM, August 2000.

[26] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana.
Internet Indirection Infrastructure. In ACM SIGCOMM’02.

[27] X. Tie, A. Venkataramani, and A. Balasubramanian. R3:
Robust Replication Routing in Wireless Networks with
Diverse Connectivity Characteristics. In MOBICOM, 2011.

[28] A. Venkataramani, X. Tie, A. Sharma, D. Westbrook,
H. Uppal, J. Kurose, and D. Raychaudhuri. Design
Guidelines for a Global Name Service for a Mobility-
Centric, Trustworthy Internetwork. COMSNETS, 2013.

[29] T. Vu, A. Baid, H. Nguyen, and D. Raychaudhuri. EIR:
Edge-aware Interdomain Routing Protocol for the Future
Mobile Internet. Technical report, WINLAB, 2013.

[30] T. Vu, A. Baid, Y. Zhang, T. D. Nguyen, J. Fukuyama,
R. P. Martin, and D. Raychaudhuri. DMap: A Shared
Hosting Scheme for Dynamic Identifier to Locator
Mappings in the Global Internet. In IEEE ICDCS, 2012.

[31] A. Yadav, A. Venkataramani, A. Sharma, and E. Cecchet.
msocket: System Support for Developing Seamlessly
Mobile,Multipath, and Middlebox-Agnostic Applications.
Technical report, UMass SCS, 2013.
http://web.cs.umass.edu/publication/.

