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Abstract—Knowledge of a network’s topology and internal
characteristics such as delay times or losses is crucial to maintain
seamless operation of network services. Network tomography
is a useful approach to infer such knowledge from end-to-end
measurements between nodes at the periphery of the network,
as it does not require cooperation of routers and other internal
nodes. Most current tomography algorithms are single-source
methods, which use multicast probes or synchronized unicast
packet trains to measure covariances between destinations from
a single vantage point and recover a tree topology from these
measurements. Multi-source tomography, on the other hand, uses
pairwise hop counts or latencies and consequently overcomes the
difficulties associated with obtaining measurements for single-
source methods. However, topology recovery is complicated by
the fact that the paths along which measurements are taken do
not form a tree in the network.

Motivated by recent work suggesting that these measurements
can be well-approximated by tree metrics, we present two
algorithms that use selective pairwise distance measurements
between peripheral nodes to construct a tree whose end-to-end
distances approximate those in the network. Our first algorithm
accommodates measurements perturbed by additive noise, while
our second considers a novel noise model that captures miss-
ing measurements and the network’s deviations from a tree
topology. Both algorithms provably use O(p polylog p) pairwise
measurements to construct a tree approximation on p end hosts.
We present extensive simulated and real-world experiments to
evaluate both of our algorithms.

I. INTRODUCTION

Knowledge of a network’s topology and internal character-
istics such as delay times and losses is crucial to maintaining
seamless operation of network services. Yet typical networks
of interest are incredibly large and decentralized so that these
global properties are not directly available, but rather must
be inferred from a small number of indirect measurements.
Network tomography [1], [2] is a promising approach that aims
to gather such knowledge using only end-to-end measurements
between nodes at the periphery of a network without coop-
eration from core routers. Designing algorithms that reliably
and accurately recover network characteristics from these
measurements is an important research direction.

Most current methods focus on single source network to-
mography; they use similarity of delay or similarity of loss
measurements from a single source to multiple nodes, caused
by shared path segments, to infer a tree topology between
the source and end nodes. The assumption of a tree topology

is justified under the premise of shortest path routing from
the source to each end node. These procedures either rely on
infrequently deployed multicast probes ([3], [4], [5], [6]) or
use a series of back-to-back unicast probes ([7], [8], [9], [10],
[11]) that need to be carefully coordinated making the method
sensitive to packet re-orderings and asynchrony between end
nodes.

Multiple source network tomography is an alternative ap-
proach that uses measurements between pairs of end nodes that
form an additive metric on a graph. Several network measures
such as end-to-end delay, loss, or hop counts between pairs
of end nodes form an (approximate) additive metric, as a
path measurement is the sum of the measure along links
constituting the path. It is possible to learn such metrics
using light-weight probes such as hop counts extracted from
packet headers [12] or pings. If the given measurements form
an additive metric on an acyclic or tree graph, a variety of
methods can be used to reconstruct the underlying structure
[11], [13], [14]. However, typically, the underlying graph is
not an exact tree as peering links between different network
providers introduce cycles and violate the tree assumption.

Given the size and complexity of the Internet, the practical-
ity of any network tomography algorithm should be evaluated
not only by its noise tolerance and robustness to violations of
any modeling assumptions, but also by its probing complexity
(the number of probes needed as a function of the number of
end hosts in the network). State-of-the-art methods for both
single- and multi-source network tomography typically suffer
in at least one of these directions. Many methods do not
optimize and/or provide rigorous guarantees on the number of
probes needed to recover the underlying graph structure, while
others are not guaranteed to be robust to noisy measurements.
Moreover, to the best of our knowledge, no method, with the
exception of [15], [16], consider violations of the assumption
that the underlying topology is a tree. In this paper, we address
all of these deficiencies.

Specifically, we present two algorithms that use selec-
tive light-weight probes to construct a weighted tree whose
path lengths provide a faithful representation of the pairwise
measurements between end hosts in the network. While the
additional nodes in the produced tree need not correspond
to hidden network elements, such a representation enables
distance approximations between unmeasured hosts, closest
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neighbor/server selection, and topology-aware clustering all of
which can improve performance of network services.

Motivated by recent work [15] showing that internet latency
and bandwidth can be well approximated by path lengths on
trees, our algorithms are designed to construct tree graphs and
consequently exact tree metrics. However, we introduce two
models to capture violations of the tree-metric assumption: (a)
an additive noise model, where all measurements are corrupted
by additive subgaussian noise, resulting in small deviations
from the tree metric properties, and (b) a persistent noise
model in which a fraction of the measurements are arbitrarily
corrupted. The persistent noise model also captures the effects
of missing measurements due to packet drops or unresponsive
nodes. Even under these noise models, our algorithms have
provable guarantees about correctness and probing complexity.

Our contributions can be summarized as follows:

1) We present algorithms for the multi-source network
tomography problem that improve on existing work
in at least one of two regards: our algorithms have
provable correctness guarantees in the presence of noisy
measurements, which can capture violations of the tree-
metric assumption, and, by intelligent use of light-
weight probes, they come with provable bounds on
probing complexity.

2) Our first algorithm addresses the additive noise model. It
uses O(pl log2 p) pairwise measurements in the presence
of noise and O(pl log p) measurements in the absence of
noise, where p is the number of end hosts in the network
and l is the maximum degree of any node, to construct
a tree that accurately reflects the measurements. As
our guarantees hold even for highly unbalanced tree
structures, this improves on existing work [10], [11] that
requires balanced-ness restrictions.

3) Under the persistent noise model, our second algorithm
uses O(pl log2 p) pairwise measurements to construct a
tree approximation, even when a fixed fraction of the
measurements are arbitrarily corrupted. Robustness to
persistent noise, however, comes at the cost of requiring
some balanced-ness of the underlying tree.

This paper is organized as follows. Section II discusses
related work and comparisons to our algorithms. We provide
background definitions and formally specify the multi-source
tomography problem in section III. Our first algorithm that
uses selective pairwise measurements to recover an unrooted,
unbalanced tree topology is presented in section IV-A, along
with an analysis of its probing complexity and tolerance to
additive noise corrupting the measurements. In Section IV-B,
we present our main algorithm, RISING (Robust Identifi-
cation using Selective Information of Network Graphs) and
analyze its robustness to persistent noise as well as its prob-
ing complexity. We validate the proposed algorithms using
simulations as well as real Internet measurements from the
King [17] and IPlane datasets [18] in section V and conclude
in section VI. Due to space constraints, several proofs are
deferred to supplementary material available online [19].

II. RELATED WORK

Initial work towards mapping the Internet topology was
based on injecting TTL (Time-to-Live)-limited probe packets
called traceroutes that record the exact path traversed by
the packet [20], [21]. These traceroute-based approaches
require routers to insert information into the packet header, and
therefore they fail in the presence of uncooperative network
elements. In particular, anonymous routers [22] and router
aliases [23] do not augment packet headers, and firewalls as
well as network address translation (NAT) boxes simply block
traceroute packets.

Among the various algorithms for single-source tomogra-
phy, two recent methods are particularly relevant to our work:
the DFS-ordering algorithm of Eriksson et. al. [10] and the
work of Ni et. al. [11]. The first provably uses O(pl log p)
probes to recover a balanced l-ary tree topology; however,
the authors make no claims about the correctness of the
algorithm in the presence of noisy measurements. Ni et. al.
present the Sequential Logical Topology (SLT) algorithm, that
uses O(pl log p) (O(pl log2 p) under additive noise) probes to
recover balanced l-ary trees while also guaranteeing correct
recovery of the topology when measurements are corrupted
by additive noise. Our first algorithm improves on the work
of Ni et. al. by relaxing the balanced-ness assumption while
maintaining the same probing complexity.

In multi-source tomography, a number of algorithms ([24],
[25], [26]) find Euclidean or non-Euclidean embeddings that
accurately reflect the measurements. While some of these
algorithms have strong probing complexity guarantees ([24]),
they do not capture the inherent hierarchical structure of
the network and thus may be less useful than algorithms
that recover tree or more intuitive models. In addition to
the embedding-based algorithms, the work of Rabbat and
Nowak [27] casts the multi-source tomography problem as a
set of statistical hypothesis test that differentiates topological
structure between two senders and two receivers. While their
approach is algorithmically more straightforward, they only
identify the presence of a shared link between the senders and
the receivers and cannot distinguish all possible topological
configurations between four end hosts as we can.

If the measurements formed an additive tree metric, then a
host of algorithms could be used to build a tree representa-
tion [13], [14], [28], some coming with probing complexity
bounds. However, the tree metric assumption does not hold in
practice, and as shown in [15], network measurements such as
latency and bandwidth only approximate additive tree metrics.
It is consequently important for us to design algorithms that
are robust to violations of the tree metric properties.

Sequoia ([15]) is one algorithm designed for this purpose.
Unfortunately, it comes with no guarantees on correctness in
the presence of these violations, and while it seems to use
only a limited number of probes in practice, it lacks probing
complexity bounds. In this paper, we build on this line of
work by designing an algorithm with theoretical guarantees
on correctness and probing complexity. Another method that
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Fig. 1. Possible structures for four leaves in a tree. If d(w, x) + d(y, z) <

d(w, y) + d(x, z) = d(w, z) + d(x, y) then structure and labeling is that
of (a). If d(w, x) + d(y, z) = d(w, y) + d(x, z) = d(w, z) + d(x, y) then
structure is a star (b).

addresses more general graph structures, beyond trees, was
proposed recently in [16]. However, this method also does not
attempt to optimize the probing complexity.

Our work, and network tomography in general, have strong
connections to the task of learning the structure of latent
variable graphical models and to problems in phylogenetic
inference. For example, in [13] and [29], algorithms are
proposed to learn tree-structured graphical models using pair-
wise empirical correlations obtained from measurements of
variables associated with leaf nodes. Under this setup, the
correlations form an exact, rather than approximate, tree
metric. Moreover, due to the different measurement model,
this work does not explicitly optimize the number of pairwise
measurements used. Our first algorithm is indeed based on
[13] and hence we call it PEARLRECONSTRUCT.

In phylogenetics, the task of learning an evolutionary tree
using genetic sequence data from several extant species is
closely related to the single-source tomography problem. Sev-
eral algorithms, such as the neighbor-joining algorithm [11],
[30], [31] have been applied to both problems. Also see [3],
[32], and [33] for more details. To the best of our knowledge,
the algorithms we propose are novel and do not exist in the
phylogenetics literature.

III. BACKGROUND AND PROBLEM FORMULATION

Let X , {x
i

}p
i=1

denote the end hosts in a network and
let d : X ⇥ X ! R+ be a function representing the true
distances between the nodes, so that d(x

i

, x
j

) is the distance,
as measured in the network, between the hosts x

i

and x
j

.
Our work focuses on distance functions d that form approx-

imate additive tree metrics. Specifically, let T = (V, E , c) be
a weighted tree with vertices V , edges E and weights c, for
which X is the set of leaves. To avoid identifiability issues, our
focus will be on minimal trees, for which each internal node
has degree � 3 and each edge has strictly positive weight.
An additive tree metric on X is a function dT such that
dT (xi

, x
j

) ,P
(xk,xl)2Path(xi,xj)

c(x
k

, x
l

), that is the distance
between two points is the sum of the edge weights along the
unique path between them. A useful property of additive tree
metrics is the four-point condition:

Definition 1. A metric (X , d) satisfies the four-point condi-

tion (4PC) if for any set of points w, x, y, z 2 X ordered such
that d(w, x)+d(y, z)  d(w, y)+d(x, z)  d(w, z)+d(x, y),
d(w, y) + d(x, z) = d(w, z) + d(x, y).

The 4PC is related to the quartet test, a common tech-
nique for resolving tree structures (Indeed, there are a host
of quartet-based algorithms for phylogenetic inference, for
example [34]). The quartet test is used to identify the structure
between any 4 leaves in a tree using only the pairwise distances
between those leaves. It is easy to see that any four leaves
either form a structure like that in Figure 1(a) or a star
(Figure 1(b)), and using the 4PC we can identify not only
which structure but also the correct labeling of the leaves (See
Figure 1 for more details).

Any metric that satisfies the four-point condition is a tree
metric for some tree. Unfortunately, latency and hop counts in
real networks do not exactly fit into this framework, but only
approximate tree metrics [15]. One characterization of this
approximation is the 4PC-✏ condition which requires d(w, z)+
d(x, y)  d(w, y) + d(x, z) + 2✏min{d(w, x), d(y, z)} for
some parameter ✏ instead of the equality in Definition 1. Met-
rics for which ✏ values are low can be well approximated by
tree metrics, and empirical studies showing that real network
measurements satisfy 4PC-✏ for low ✏s motivates the use of
this model.

In this work, we take a more statistical approach and instead
assume that d(x

i

, x
j

) = dT (xi

, x
j

) + g(x
i

, x
j

) where the
function g models the networks deviations from a tree metric.
This approach allows us to not only formally state the multi-
source network tomography problem but also to make rigorous
guarantees about the performance of our algorithms. We focus
on two models for these deviations:

1) Additive Noise Model – In this model, g(x
i

, x
j

) is
drawn from a subgaussian with �2 as a scale factor1.
The small perturbation model studied in single source
network tomography (See for example [11]) is similar
to this as subgaussian noise is bounded, with high
probability, by a small constant (depending on �2).
This model captures the inherent randomness in certain
types of measurements, such as latencies. Under this
formulation we allow each measurement to be observed
several (n) times.

2) Persistent Noise Model – Here g(x
i

, x
j

) = 0 with prob-
ability q, independent of all other x

i

and x
j

, and with
probability 1�q, g(x

i

, x
j

) is arbitrary (or adversarially)
chosen. We believe this is a reasonable model of how
the measurements do not exactly form a tree metric,
due to violations caused by peering links, unresponsive
nodes or missing measurements. To more accurately
model violations of tree metric assumptions, multiple
request for a measurement all reveal the same (possibly
incorrect) value, so we only obtain one sample of each
measurement. To the best of our knowledge, there are
no other efforts to study this noise model.

While [15] capitalized on the fact that ⇠ 80% of the quartets
satisfy 4PC with a small perturbation ✏, we also note that

1A random variable X is subgaussian with scale factor �

2 if
P(exp(tX))  exp(�

2
t

2
/2). This family encompasses both gaussian and

bounded random variables.



4

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ε

C
D

F

 

 

King
IPlane
Sphere

Fig. 2. CDFs of ✏ values in the 4PC-✏ condition for two real world datasets
(King [17] and IPlane datasets [18]) along with a dataset of points drawn
uniformly from the surface of a sphere, where geodesic distance defines the
metric.

⇠ 20% of the quartets do not satisfy the 4PC even with
✏ = 1, which corresponds to triangle inequality violations (See
Figure 2 where we plot the CDF of ✏ values for two real-world
datasets). We attempt to address both of these phenomena
with our two noise models: additive noise to capture the
small deviations from 4PC and persistent noise to capture the
larger perturbations. While in this paper, we addresses these
two types of noise separately, our second algorithm can be
modified to handle both types of noise simultaneously. To keep
the exposition simple, we defer that case and all detailed proofs
to a longer version of the paper.

We are now prepared to formally specify our problem:

Problem 1. Given a metric space (X , d) equipped with a
metric d = dT + g for some tree T , recover T and dT while
minimizing the number of measurements of d.

In this paper, we develop algorithms for this problem under
the assumption that g corresponds to one of the models above.
Before we present our algorithms, we define several quantities
that appear in our algorithms and the subsequent analysis.
For any tree T , let lvs(T ) denote the set of leaf nodes of
T and let deg(T ) denote the maximum degree of the tree.
For convenience will we define l , deg(T ).

For any three nodes x, y, and z in a tree T let
ancestor(x, y, z) be the unique node that is the shared common
ancestor of x, y and z. This node is the unique point along
which the paths between x, y and z intersect in T and
distances to this point can be computed by (where a =

ancestor(x, y, z)):

dT (x, a) ,
1

2

(dT (x, y) + dT (x, z)� dT (y, z)) (1)

To avoid propagation of additive noise in ancestor computa-
tions, we only use distances between true leaf nodes (nodes in
X ). To compute the ancestor and associated distances between
three nodes x, y, z, some of which may not be leaves, we use a
surrogate leaf node for each non-leaf node in the computation.
A surrogate leaf node for x is one for which x is on the path
between that leaf and both y and z. The restriction to minimal
trees guarantees the existence of surrogate leaf nodes.

Algorithm 1 PEARLRECONSTRUCT(X , d, �)
Initialize T

3

as a star tree on x
1

, x
2

, x
3

for i = 4 . . . p do
T
i

= PearlAdd(x
i

, T
i�1

, d, �)
end for
return T

p

Algorithm 2 PEARLADD(x
i

, T
i�1

, d, �)
T
c

= T
i�1

while |lvs(T
c

)| > 2 do
Choose a subtree T

out

such that:
|lvs(Tc)|

deg(Tc)+1

< |lvs(T
c

) \ lvs(T
out

)| < |lvs(Tc)|deg(Tc)

deg(Tc)+1

.
r  parent of T

out

in T
c

Let T
sub

6= T
out

be any other subtree of T
c

rooted at r
and choose x

k

2 lvs(T
sub

), x
j

2 lvs(T
out

).
y  ancestor(x

i

, x
j

, x
k

), compute d(x
i

, y), d(x
j

, y), and
d(x

k

, y), using surrogates as needed.
If d(x

j

, y) + �/2 < d(x
j

, r), then T
c

 T
out

[ {r}
If d(x

k

, y) + �/2 < d(x
k

, r), then T
c

 T
sub

[ {r}
Otherwise T

c

 T
c

\ {T
sub

[ T
out

}
end while
if |T

c

| = 1 then
Attach x

i

to T
c

with edge length d(x
i

, y).
else
T
c

has two nodes r and r0. Choose leaves x
k

and x
j

such
that r is on the path between x

k

and r0, and r0 is on the
path between x

j

and r.
y  ancestor(x

i

, x
k

, x
j

).
If |d(x

k

, y)� d(x
k

, r)| < �/2, then attach x
i

to r.
If |d(x

j

, y)� d(x
j

, r0)| < �/2, then attach x
i

to r0.
Otherwise, insert y between r and r0 (with edge weights
d(x

k

, y) � d(x
k

, r) and d(x
j

, y) � d(x
j

, r0)) and attach
x
i

to y with edge weight d(x
i

, y).
end if
return T

i�1

updated to include x
i

.

IV. ALGORITHMS

In this section we describe our algorithms for multi-source
network tomography and present our theoretical guarantees
on correctness and probing complexity. Our first algorithm,
PEARLRECONSTRUCT addresses the additive noise model
while our second, RISING addresses the persistent model.

A. Additive Noise

The idea behind our first algorithm is to construct the tree T
by iteratively attaching the leaves. To add leaf x

i

, we perform
an intelligent search to find a pair of nodes x

j

, x
k

such that
the distance between x

i

and ancestor(x
i

, x
j

, x
k

) is minimized.
This information, along with the fact that x

i

is not in the same
subtree as either x

j

or x
k

(which we also determine), tell us
how to add x

i

to the tree.
Our search is intelligent in that we choose x

j

and x
k

to
rule out large portions of the tree at every step. Specifically,
by choosing a point with fairly balanced subtrees (known as
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the pearl point), we can determine which of these subtrees x
i

belongs to and focus our search to a subtree that is a fraction
of the original size, using a constant number of measurements.
Formally, for any directed instance of a tree T , the pearl
point is the internal node in a tree for which the number of
leaves below that node is between |lvs(T )|/(deg(T )+ 1) and
|lvs(T )|deg(T )/(deg(T ) + 1). As we show, using the pearl
point results in a strong upper bound on the number of mea-
surements used while ensuring correctness of the algorithm.

PEARLRECONSTRUCT is related to the algorithm in [13],
the Sequential Logical Topology (SLT) algorithm of [11], and
the Sequoia algorithm of [15]. Our intelligent search parallels
that of [13], but by using triplet tests rather than quartet tests
and by incorporating slack into our search, PEARLRECON-
STRUCT is robust to additive noise while their algorithm is
not. On the other hand, the SLT algorithm is robust to noise,
but they do not begin their search at the pearl point of the
tree, and thus their probing complexity guarantees only hold
for balanced trees, while our guarantees are more general. The
Sequoia algorithm also adopts some of the same ideas, but
since their search is based on heuristics, they do not provide
upper bounds on the number of probes used.

Our algorithms have a parameter � that is a lower bound on
the edge weights in the true tree T . This parameter helps us
distinguish two nodes separated by a short edge in the presence
of noise. Similar parameters have been used in existing tree
reconstruction algorithms that are robust to additive noise [11].

Pseudocode for PEARLRECONSTRUCT is shown in Algo-
rithms 1 and 2. We now present our theoretical guarantees
for PEARLRECONSTRUCT; note that proofs of some technical
lemmas are deferred to the supplementary materials [19].

Theorem 1. Let (X , d) be an metric with |X | = p where
d = dT + g for a tree T with minimum edge length � � and
where g(x

i

, x
j

) is a subgaussian random variable with scale
factor  �2. Let {d(i)}n

i=1

be samples of d. Define the sample
distance metric ˆd where ˆd(x

j

, x
k

) , 1

n

P
n

i=1

d(i)(x
j

, x
k

). If

n > 18

�2

�2

log(2p2/�) (2)

then with probability � 1��, PEARLRECONSTRUCT on input
(X, ˆd, �), recovers T and dT .

Proof: First, we consider the noiseless scenario. In the
supplementary material [19]we show that PEARLRECON-
STRUCT on input (X, dT ) deterministically recovers T . Our
proof of this Lemma follows that of [13]. Specifically, we show
that adding node x

i

to T
i�1

results in not only the correct
structure but also the correct distances between x

1

, . . . x
i

. We
arrive at the result by iterative applications of this argument.

In noisy setting, we can no longer deterministically guaran-
tee correct recover of T , but instead require a probabilistic
analysis. In the algorithm, we choose three nodes x

i

, x
j

and x
k

and compute distances between these nodes and
y , ancestor(x

i

, x
j

, x
k

). We need to be able to correctly
determine if y lies between the root r and x

j

, between r

and x
k

, or elsewhere in the tree. We therefore seek to bound
| ˆd(x

k

, y)� d(x
k

, y)| and | ˆd(x
j

, y)� d(x
j

, y)|.
To arrive at these bounds, we first derive concentration in-

equalities for the directly observed measurements. Specifically,
by application of the Gaussian Tail Inequality and the union
bound we have that with probability � 1� �:

| ˆd(x
i

, x
j

)� d(x
i

, x
j

)| 
r

2�2

log(2p2/�)

n
(3)

for all leaves x
i

, x
j

, i, j 2 [p]. Using this bound along
with Equation 1, immediately reveals that the distance in the
estimated tree between any two nodes deviates from the correct
distance by at most 3

2

q
2�

2
log(2p

2
/�)

n

.
In order for the algorithm to work, we need to ensure that

we can identify when the ancestor node y equals the root node
r, in spite of the deviations. If:

� > 3

r
2�2

log(2p2/�)

n
(4)

then with high probability we will not confuse the nodes y
and r, since distances to each node only deviate by half that.
Inverting Equation 4 yields the bound on n in the theorem.

Theorem 2. PEARLRECONSTRUCT uses O(pl log2 p) pair-
wise measurements, where l , deg(T ).

Proof: We study the add procedure. By Lemma 1 in [13],
we know that for any T

c

there exists a subtree T
out

for which:

|lvs(T
c

)|
deg(T

c

) + 1

< |lvs(T
c

) \ lvs(T
out

)| < |lvs(T
c

)|deg(T
c

)

deg(T
c

) + 1

Let l
c

= deg(T
c

). The fact that |lvs(T
c

) \ lvs(T
out

)| <
|lvs(Tc)|lc

lc+1

means that |lvs(T
out

)| � |lvs(Tc)|
lc+1

. Writing T i

c

to
denote T

c

after i iterations of the loop, we see that no matter
how the search proceeds, |lvs(T i

c

)|  lc
lc+1

|lvs(T i�1

c

)|.
Thus the number of iterations required to place x

i

in T
i�1

is at most log lc+1
lc

(i � 1)  l
C

log(i � 1)

2. Since each
loop iteration uses a constant number of pairwise distance
measurements, l

c

is upper bounded by l the maximum degree
of T , and we call the add at most p times, we see that the
probing complexity is O(pl log p) in the absence of noise.

Finally, recall from Theorem 1 that if n is O(log p) we
can guarantee exact recover of the tree. We must therefore
observe each measurement O(log p) times and including this
multiplicative factor results in the stated bound.

B. Persistent Noise

For the persistent noise model, we propose a divisive
algorithm; it recursively partitions the leaves into groups cor-
responding to subtrees of T . Each partitioning step identifies
one internal node in the tree, and by repeated applications of
our algorithm, we identify all internal nodes that satisfy certain
properties (detailed in Theorem 3).

A top-down partitioning algorithm allows us to use voting
schemes that are robust to persistent noise. Specifically, we

2since log(1 + 1/lc) < 1/lc
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Algorithm 3 RISING(X , d,m)
Randomly choose M ⇢ X with |M | = m
For x

i

, x
j

2 M , compute s(x
i

, x
j

) = max

xk2M

|{x
k

0 2
M : d(x

i

, x
k

)� d(x
j

, x
k

) = d(x
i

, x
k

0
)� d(x

j

, x
k

0
)}|

Run Single Linkage Clustering using s as similarities to
partition M into a set of clusters C with |C| = 3.
for x

i

2 X \M do
VOTE(x

i

, C, d)
end for
Initialize T with 1 node r
for C 2 C do

T
sub

 SPLIT(C,X \ C, d,m).
Choose clusters C

1

, C
2

2 C \ C
weight(r, root(T

sub

))  EDGELENGTH(C
1

, C
2

, T
sub

, d)
end for
return T

Algorithm 4 SPLIT(S , Y, d,m)
Randomly choose M ⇢ S with |M | = m
For each x

k

2M , draw Z(k) randomly from Y .
For x

i

, x
j

2 M , compute s(x
i

, x
j

) = |{x
k

2 M :

d(x
i

, x
k

)� d(x
j

, x
k

) = d(x
i

, x
Z(k)

)� d(x
j

, x
Z(k)

)}|.
Run Single Linkage Clustering using s as similarities to
partition M into clusters C with |C| = 2

for x
i

2 S \M do
VOTE(x

i

, C [ {Y}, d)
end for
Initialize T with 1 node r
for C 2 C do

T
sub

 SPLIT(C,Y [ (S \ C), d,m).
Choose C 0 2 C \ C
weight(r, root(T

sub

))  EDGELENGTH(C 0, Y , T
sub

, d)
end for
return T

identify groups of nodes by repeatedly performing quartet or
triplet tests and deciding on the structure agreed on by the
majority. However, to ensure that these groups are sufficiently
large, we require a balancedness condition:
Definition 2 (Balance Factor). We say that T has balance

factor ⌘ if there exists a node r such that for all internal nodes
h (including r), with subtrees T

1

(h), . . . , T
k

(h) directed away
from r, ⌘ , max

h

maxi |lvs(Ti(h))|
mini |lvs(Ti(h))| .

To identify a single internal node r our algorithm randomly
samples a subset of the leaves, forms a clustering of this
subset, and then places each remaining leaf into one cluster.
After recursively partitioning each cluster, we compute edge
lengths using a voting scheme. In the clustering phase, we
compute a similarity function s on the sampled leaves where
s(x

i

, x
j

) is large if the two leaves belong in the same subtree
of T , viewed with r as the root. We partition the sampled
nodes into two clusters in most cases (to find the first split
we partition into three). Each of these clusters is comprised of
leaves from one or more subtrees rooted at r, but the leaves

Algorithm 5 VOTE(x, C, d)
Let C

1

, C
2

, C
3

2 C
V C

1

, V C
2

, V C
3

 0

for n 2 {1, . . . ,min

C2C |C|} do
Choose x

1

2 C
1

, x
2

2 C
2

, x
3

2 C
3

.
V C

i

 V C
i

+ 1 if x pairs with x
i

w.r.t. the other two.
If x

i

, x
1

, x
2

, x
3

form a star, ignore this vote.
end for
Place x in C

i

where V C
i

= argmax{V C
1

, V C
2

, V C
3

}

Algorithm 6 EDGELENGTH(C
1

, C
2

, T
sub

, d)
C

L

 leaves in one subtree of T
sub

C
R

 leaves in another subtree of T
sub

for n 2 {1, . . .min{m, |C
1

|, |C
2

|, |C
L

|, |C
R

|} do
Draw w 2 C

1

, x 2 C
2

, y 2 C
l

, z 2 C
R

Record 1

2

d(w, y) + d(x, z)� d(w, x)� d(y, z)
end for
Return the most frequently occuring recorded value

from any of the subtree are contained wholly in one cluster.
Once we have clustered the sampled nodes, we use voting to

determine the group assignments for the remaining nodes. To
place a node x

i

, we compute quartet structures (See Figure 1)
between x

i

and x
j

, x
k

, x
l

(each from different clusters) and
record which node x

i

paired with in the quartet test. We place
x
i

into the cluster that most commonly paired with x
i

.
The computations required to find the initial partition of

leaves are slightly different from those required for subsequent
splits. To highlight these differences, we present pseudocode
for recovering the first partition in Algorithm 3 and for
subsequent partitions in Algorithm 4. These algorithms rely
on two subroutines which we show in Algorithms 5 and 6.

Before presenting our theoretical guarantees, we remark that
while our results analyze RISING in the presence of only
persistent noise, with slight modifications the algorithm can
be made robust to both persistent and additive noise. The
main change would involve incorporating slack into the quartet
tests, much like we have done in PEARLRECONSTRUCT.
The analysis for this modified algorithm would incorporate
the techniques used in Theorem 1 (specifically concentration
of subgaussian random variables) into our current proofs.
However, for clarity of presentation, our analysis guarantees
the correctness of RISING under only persistent noise.
Theorem 3. Let (X , d) be a metric where d , dT + g for
a tree T with bounded balance factor ⌘ and where g is from
the persistent noise model with probability of an uncorrupted
entry � q with q6 > C

⌘,l

. Then with probability � 1 � 1/p,
every execution of RISING and SPLIT, with parameter m,
will correctly identify an internal node provided that:

m > c
⌘,l

log(pm)

(q6 � C
⌘,l

)

2

(5)

where 1/2  C
⌘,l

< 1, c
⌘,l

are constants depending on ⌘ and
l.
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Remark In the absence of noise, we can choose m to be a
function of |S|, the subset of leaves passed into the SPLIT rou-
tine. However, with noise, m must be ⌦(log p) and if S is too
small for this, then S cannot be further resolved, and thus log p
limits the resolution to which the structure can be resolved.

Remark In the supplementary material [19], we give a pre-
cise characterization of C

⌘,l

, which plays a critical role in
RISING’s robustness to noise. While C

⌘,l

< 1 for all values
of ⌘ and l, it grows with these quantities. Specifically, the
minimum value for C

⌘,l

is 1/2, which happens when ⌘ = 1

and l = 2.

Our proof strategy is to analyze each phase – sampling,
clustering and voting. Here, we outline that analysis of each
section; we defer all proof details to the supplementary
material [19]. In the sampling phase we use concentration
inequalities to show that with high probability the balance
factor ⌘ is not significantly perturbed. This result is necessary
for the clustering phase of the algorithm, which is only
guaranteed to succeed if the balance factor is sufficiently small.

In the clustering phase, we show that if q, the probability
of an uncorrupted entry is sufficiently large, then the Single
Linkage algorithm will identify clusters that correspond to the
subtrees (or groups of subtrees) of the internal node we hope to
recover. While we do not make any guarantees about grouping
the leaves associated with two different subtrees, we remark
that this does not affect our subsequent analysis and that these
subtrees will be separated in later calls to SPLIT, allowing us
to accommodate l-ary trees.

The similarity function used by Single Linkage is the
quantity s defined in Algorithms 3 and 4. The analysis for
this phase involves showing that s(x

i

, x
j

) for two leaves that
belong in the same subtree is always greater than s(x

i

, x
k

) and
s(x

j

, x
k

) for every node x
k

that does not lie in the subtree.
This implies that we will merge clusters containing x

i

and x
j

before we merge either of these clusters with one containing
a node that does not belong in the subtree. Applying this
argument to each pair of leaves proves that Single Linkage
will correctly identify the clusters.

The condition that ⌘ is bounded ensures that, for m large
enough, these quantities are well-separated in the absence of
noise. With noise, ensuring this gap exists with high probabily
requires a condition on m that is subsumed by Equation 5, and
that the noise is not too excessive, i.e. q4 > C

⌘,l

.
For the voting phase, we claim that any single round of

voting is correct with probability q6, that is if every voting
node has uncorrupted measurements. Again using concentra-
tion inequalities we can show that if q6 > C

⌘,l

, then for m
large enough we will be able to place a node into the correct
cluster. This results in the condition on m in Equation 5.

Finally, via union bounds, we apply these arguments to
every internal node in T that meets the conditions on m.

We note that we do not explicitly prove the correctness of
EDGELENGTH but similar techniques to the ones we use above
can be used to make this claim.
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Fig. 3. Noise Thresholds for PEARLRECONSTRUCT and RISING.

Theorem 4. On trees with bounded balance factor, RIS-
ING uses O(pml log p) measurements where l is the maximum
degree of the tree T .

Proof: We will analyze each level of the tree in turn.
Since ⌘ is bounded, there are O(log p) levels of the tree.

At each level, let C be the set of all groups we are trying
to split at this level, that is each C 2 C is the set of nodes
passed in as the first parameter to SPLIT, or in the case of
the first call, C just contains one set with all of the nodes. For
each group C 2 C let p

C

denote the number of nodes in C
and let m

C

denote the value of the parameter m which can
be a function of |C| 3.

For each cluster C, we require m
C

(m
C

+ 1)/2 measure-
ments between sampled nodes and, in SPLIT, an additional
m

C

measurements from the set Y . In the voting phase, we
vote on p

C

�m
C

nodes and for each node we require m
C

+1

measurements to the sampled nodes and to one node in Y .
Putting this together, we have that at any level, we use:

X

C2C

m
C

(m
C

+ 1)

2

+m
C

+ (p
C

�m
C

)(m
C

+ 1) (6)


X

C2C
p
C

(m
C

+ 1)  p(m+ 1) (7)

as long as m
C

> 1 for all C, and where m , m
p

is the
value of m passed into the call to RISING, i.e. it is the
largest value of m across all calls to RISING and SPLIT.
Here we used that

P
C2C pC = p. Thus we see that regardless

of the balancedness of the tree, at each level we use O(pm)

measurements, and as described above, there are O(log p)
levels resulting in a measurement complexity of O(pm log p).
The factor of l arises because each call to SPLIT only splits
the subtrees of a node into two groups; it may take up to l
calls to recover each internal node.

Lastly, we can compute edge lengths using O(m) measure-
ments. Since this is dominated by the above bounds, we ignore
this dependence.

V. EXPERIMENTS

We perform several experiments on simulated and real-
world topologies to assess the validity of our theoretical results
and to demonstrate the performance of our algorithms. We
study how increasing noise affects our algorithms ability to
correctly recover the topology and also how the number of
measurements used compares to related algorithms.

3Specifically m = m(|C|) can be any increasing function of |C|
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(c) Probing Complexity of RISING
Fig. 4. Measurements used as a function of p for PEARLRECONSTRUCT, RISING, DFS Ordering [10], SLT [11], and Sequoia [15]

A. Simulations

In simulations, we demonstrate how our algorithms tolerate
noise, how this tolerance scales with p, and additionally how
the number of measurements used scales with p. For these
experiments, we generate tree topologies and obtain pairwise
distances by computing unweighted path lengths along the tree
to represent hop counts in a network. We then perturb this
pairwise distance matrix with additive or persistent noise and
run our algorithms on this perturbed matrix. We assess the
correctness of our algorithms by computing the fraction of
quartets for which the structure in the reference tree matches
that in the algorithm’s output.

For RISING, in simulations we always choose m =

log

2 |S| (even with noise), which as mentioned, satisfies the
conditions of Theorem 3 in the absence of noise. For our real
world experiments, we use m = log p.

Our first experiment studies how PEARLRECON-
STRUCT and RISING perform in the presence of noise.
In Figures 3(a) and 3(b) we plot the fraction of incorrect
quartets averaged over 20 trials for PEARLRECONSTRUCT and
RISING respectively, as a function of the noise for different
values of p. In Figure 3(a) we verify three properties
of PEARLRECONSTRUCT: (a) in the absence of noise, it
deterministically recovers the true topology as predicted
by Lemma 4.1, (b) as the noise variance increases,
PEARLRECONSTRUCT becomes less accurate, (c) on
larger topologies, PEARLRECONSTRUCT requires lower noise
variance. This last properties follows from Equation 2 since
if n is constant (we took n = 1 for these experiments),
we require �2

= O(

1

log p

) in order to guarantee successful
recovery, and this upper bound decreases with p.

For RISING, in Figure 3(b), we observe the opposite
phenomenon; larger topologies can tolerate more persistent
noise. This matches our bounds in Theorem 3, which allows q
to approach a constant as m, p ! 1. As before, we also
observe that in the absence of noise, we deterministically
recover the underlying topology, although we note that we
used balanced binary trees for these experiments. For highly
unbalanced trees, we cannot make this deterministic guarantee.

To assess the probing complexity of our algorithms, we
record how many measurements each algorithm uses as a
function of p, in the absence of noise. These plots are shown
in Figure 4. As is noticeable in Figure 4(a), the probing com-
plexity for PEARLRECONSTRUCT appears to be O(p log p).
We also show the probing complexity for the DFS Ordering
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Fig. 5. CDF of relative error on King (a) and iPlane (b) datasets.

algorithm of Eriksson et al [10] and the Sequential Logical
Topology (SLT) algorithm [11], both of which are single-
source tomography methods with provable O(p log p) com-
plexity on balanced trees. The trees used here are randomly
generated, and we see that the SLT algorithm performs worse
that PEARLRECONSTRUCT, while DFS Ordering seems to use
a constant multiplicative factor fewer probes.

However, in the worst case, PEARLRECONSTRUCT enjoys
considerable advantage over both SLT and DFS Ordering as
can be seen in Figure 4(b). In this experiment, we used highly
unbalanced trees and we see that the probing complexity of
both SLT and DFS Ordering scale at O(p2), while PEARLRE-
CONSTRUCT continues to scale at O(p log p).

In Figure 4(c), we compare RISING to the Sequoia al-
gorithm of [15]. While Sequoia comes with no guarantees
about correctness or probing complexity, it appears to use very
few measurements in practice. RISING on the other hand
appears to use a multiplicative factor of log p more probes
than Sequoia, which we confirmed empirically. However, as
we show in our real world experiments, Sequoia is less
robust to noise, which demonstrates the need to use additional
measurements to overcome noise. We also emphasize that
RISING comes with guarantees on correctness in the presence
of noise while Sequoia does not.

B. Real World Experiments

In addition to verifying our theoretical results, we are inter-
ested in assessing the practical performance of our algorithms
on real world data. We use two network measurement data
sets: the King dataset [17] of pairwise latencies and a dataset
of hop counts between PlanetLab [35] hosts measured using
iPlane [18]. We selected a 500-node subset of the 1740-node
King dataset. The iPlane dataset consists of 193 end hosts.

We ran three algorithms, PEARLRECONSTRUCT, RISING,
and Sequoia, on both datasets and plot the distribution of
relative error values for each algorithm. Given the constructed
tree metric (X, ˆd) and the true metric (X, d), we measure
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Dataset Hosts Total Pearl RISING Sequoia
King 500 125250 8321 43608 42599
iPlane 194 18721 2480 12309 11574

TABLE I
Measurements used on real world data sets

relative error for each pairwise distance as | ˆd(xi,xj)�d(xi,xj)|
d(xi,xj)

.
This quantity reflects how well the tree metric approximates
the true distances in the network. These plots are shown in
Figures 5(a) and 5(b). We see that on both datasets, RIS-
ING outperforms both Sequoia and PEARLRECONSTRUCT,
with substantial improvements on the King dataset. PEARL-
RECONSTRUCT performs moderately well on both datasets.

Lastly, we recorded the number of measurements used by
the algorithms on the two datasets in Table I. Note that Sequoia
can be used to build many trees where the recovered pairwise
distances is the median distance across all trees. To ensure a
fair comparison, we build several trees so that Sequoia and
RISING use a similar number of measurements. However,
even with several trees, RISING performs better than Sequoia.

VI. CONCLUSION

In this paper we study the multi-source network tomography
problem. We develop two algorithms, with theoretical guaran-
tees, to construct tree metrics that approximate measurements
between end hosts in a network. We also demonstrate the
effectiveness of these algorithms on real world datasets.

There are several directions for future work. One restriction
with the RISING algorithm is the balancedness requirement
and it is an open problem to design an algorithm that is robust
to persistent noise with correctness guarantees even for unbal-
anced trees. Another interesting direction is to approximate
pairwise measurements with general graphs rather than trees,
using knowledge of real-world network structures to avoid
identifiability issues. We look forward to exploring both of
these lines of work.
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APPENDIX

Lemma 4.1. Let (X, d) be a tree metric on T with |X| = p.
Then PEARLRECONSTRUCT on input (X, d) recovers T .

Proof: We start with T
3

, the tree on leaves x
1

, x
2

and
x
3

. Every minimal tree on 3 leaves has the same structure
as T

3

, so we know this is correct. Moreover, since d(x
i

, y)
for i 2 {1, 2, 3} and y = ancestor(x

1

, x
2

, x
3

) is given by
Equation 1, we know that the edge weights in T

3

are also
correct.

We now analyze the add procedure, showing that it cor-
rectly places x

i

into the tree so that T
i

is the correct minimal
tree on x

1

, . . . , x
i

with the correct edge weights. We proceed
by case analysis: for any root r with subtrees T

out

and
T
sub

, it must be that either x
i

belongs in T
out

, T
sub

or in
T
c

\{T
sub

[T
out

}. For any x
k

2 T
sub

, x
j

2 T
out

, if x
i

belongs
in T

out

, then it must be the case that d(x
j

, y) < d(x
j

, r) or
else the shared common ancestor between x

i

, x
j

, and x
k

could
not possibly lie in T

out

. Similarly, if x
i

belongs in T
sub

then it
must be that d(x

k

, y) < d(x
j

, r). Finally, if x
i

lies in neither
subtree, then ancestor(x

i

, x
j

, x
k

) = r.
In each case, we update T

c

so that it still contains the
location where x

i

should be added. Since we choose T
sub

and T
out

to be non-empty subtrees, the size of T
c

decreases
on every iteration, so the algorithm must eventually exit the
while loop.

When this happens, |T
c

|  2 and T
c

contains the location of
x
i

. If |T
c

| = 1, then the only place to add x
i

is as a child of the
node in T

c

. This case only happens if ancestor(x
i

, x
j

, x
k

) = r
in the last iteration of the while loop, so the distance d(x

i

, y)
is the correct edge weight for the new edge.

If |T
c

| = 2, then we use two additional leaves to determine
how to place x

i

. Case analysis reveals that our procedure
correctly places x

i

into T
c

. Thus, we conclude that the add

procedure correctly update T
i�1

to contain x
i

.
By iteratively applying this analysis, we arrive at the claim.

Lemma 4.2 (Sampling). Let T have balance factor ⌘ and
maximum degree k. Then in all iterations of RISING and
SPLIT, with probability � 1 � 2/pk, the sampled subtree of
T with leaf set M has balance factor:

⌘̂  2⌘ + 1

as long as m � 4(1 + (k � 1)⌘)2 log(pk).

Proof: In this proof we will simultaneously work with
all of the recursive calls of RISING. Since each call recovers
one internal node, and there can be no more than p internal
nodes in T , we can enumerate the calls from 1 to p. Each call
operates on a subset of leaf nodes and we will refer to the tree
induced by those leaves as T s for the sth call.

For fixed s, define the random variables Z
ij

, i 2 [m], j 2
[k]4, which takes value 1 if the ith leaf sampled belongs in
T s

j

, the jth subtree of r (the root of T s). Further define ˆT s

j

4we use [m] to denote {1, . . . ,m}

to be the sampled version of T s

j

, that is the tree T s

j

restricted
to only the leaves in M . Notice that E[Z

ij

] = |lvs(T s

j

)| and
that |lvs( ˆT s

j

)| =
P

m

i=1

Z
ij

. By Hoeffding’s inequality we have
that:

P
✓
| 1
m
|lvs( ˆT s

j

)|�
|lvs(T s

j

)|
|lvs(T s

)| > ✏

◆
 2 exp{�2m✏2} (8)

(9)

for any single j 2 [k], s 2 [p]. We would like to do this across
all calls to SPLIT, and for each subtree in any of the calls. We
take a union bound across all internal nodes and all subtrees,
and then rewrite to introduce dependence on the balance factor
⌘, noting that |lvs(T s

(k)

)|  ⌘|lvs(T s

(1)

)| for any internal node
5. This gives us that:

1

m
|lvs( ˆT s

(1)

)| �
|lvs(T s

(1)

)|
|lvs(T s

)| �
r

log(2pk/�
1

)

2m
(10)

1

m
|lvs( ˆT s

(k)

)| 
⌘|lvs(T s

(1)

)|
|lvs(T s

)

+

r
log(2pk/�

1

)

2m
(11)

Note that since we have established concentration inequal-
ities for all subtrees, we know that the new balance factor
⌘̂ depends only on the lower bound for the smallest subtree
size and the upper bound for the largest subtree size. Now let
m = c log(pk) and set �

1

= 2/pk. With these settings we
have:

1

m
|lvs( ˆT s

(1)

)| �
|lvs(T s

(1)

)|
|lvs(T s

)| �
r

1

c
(12)

1

m
|lvs( ˆT s

(k)

)| 
⌘|lvs(T s

(1)

)|
|lvs(T s

)| +

r
1

c
(13)

The new balance factor is the ratio of these two quantities. To
find the worst case ⌘̂, we need to maximize with respect to
|lvs(T s

(1)

)|. It is easy to verify that the maximum is achieved at
the smallest possible size for T s

(1)

, and given a balance factor
of ⌘, we have that |lvs(T s

(1)

)| � |lvs(T s
)|

1+(k�1)⌘

, achieved when the
remaining subtrees are all of the same size. Plugging in this
value for |lvs(T s

(1)

)| we have:

⌘̂ 
⌘

1+(k�1)⌘

+

q
1

c

1

1+(k�1)⌘

�
q

1

c

(14)

Now as long as c � (1+(k�1)⌘)2, this quantity is guaranteed
to be positive and if c = 4(1+ (k� 1)⌘)2, then some algebra
shows that:

⌘̂  2⌘ + 1 (15)

Lemma 4.3 (Clustering). Suppose that the probability of an
uncorrupted entry q4 > C

⌘̂,k

and :

m > c
⌘̂,k

log(m2/�
2

)

(q4 � C
⌘̂,k

)

(16)

5we use T

s
(1), . . . , T

s
(k) to denote the subtrees of T

s in increasing sorted
order by number of leaves
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for constants C
⌘̂,k

< 1, c
⌘̂,k

that depend on ⌘̂ and the max
degree k. Then with probability � 1 � �

2

, Single Linkage
clustering on M using s(x

i

, x
j

) as the similarity between x
i

and x
j

partitions M such that either each subtree is entirely
contained in one cluster C 2 C, or if a subtree is split across
clusters, those clusters contain no nodes from other subtrees.

Remark While we have suppressed dependence on ⌘̂ in
Lemma 4.3, we note that a critical condition for correctness
is that ⌘̂ = O(1). This condition ensures that single linkage
clustering completely groups any individual subtrees of T
before merging it with any other subtree and is required for
our algorithms to be robust to noise.

Proof: The proofs for RISING and SPLIT are almost
identical. We tailor our proof to the former, noting where
modifications need to be made for the latter.

Our strategy is to lower bound the quantity s(x
i

, x
j

) for
any pair of leaves x

i

, x
j

that belong to the same subtree and
to upper bound s(x

i

, x
k

) if x
i

and x
k

do not belong to the
same subtree. Under the conditions on q, we show that this
lower bound exceeds the upper bound and this guarantees that
one subtree will be fully contained in any cluster before any
two subtrees are merged. This means that either a subtree is
fully contained in a cluster or if it is split across clusters, no
nodes from other subtrees are in these clusters.

To assist in our analysis we use the following notation.
Let s⇤(x

i

, x
j

) be the value of s(x
i

, x
j

) in the absence of
noise. Let G

ij

be the group of nodes x
k

that all have
the same d(x

i

, x
k

) � d(x
j

, x
k

) value and that achieve the
maximum in the computation of s(x

i

, x
j

). In particular, this
means s⇤(x

i

, x
j

) = |G
ij

|. As above, we write ˆT
i

to be
the ith subtree of r, restricted to the leaves in M . Define
ˆT
(1)

, . . . , ˆT
(k)

to be the subtrees ordered by increasing number
of leaves. Finally define T

min

,Pk�1

i=1

|lvs( ˆT
(i)

)| and A

min

,P
k

i=k�1

|lvs( ˆT
(i)

)|. T

min

is a lower bound on s⇤(x
i

, x
j

) for
x
i

, x
j

in the same subtree and A

min

is an upper bound on
m� s⇤(x

i

, x
k

) for x
i

, x
k

in different subtrees.
We now lower bound s(x

i

, x
j

) for x
i

, x
j

in the same
subtree. In the presence of noise, any node x

t

2 G
ij

remains
in G

ij

as long as d(x
i

, x
t

) and d(x
j

, x
t

) are not corrupted,
which occurs with probability at least q2. Thus:

E[s(x
i

, x
j

)] � q2s⇤(x
i

, x
j

)

Since each x
t

contributes to s(x
i

, x
j

) independently and since
there are |G

ij

| nodes x
t

, we can use Hoeffding’s Inequality,
coupled with a union bound, to show that with probability
� 1� �

c1

:

s(x
i

, x
j

) � q2s⇤(x
i

, x
j

)�m

s
log(m2/�

c1

)

2T

min

(17)

for all pairs i, j that belong in the same subtree. This is our
lower bound.

For SPLIT, we analogously define G
ij

, {k : d(x
i

, x
k

) �
d(x

j

, x
k

) = d(x
i

, x
Z(k)

) � d(x
j

, x
Z(k)

)} and we require

that four measurements are uncorrupted. The above argument,
tailored to this scenario gives (with probability � 1� �

c1

):

E[s(x
i

, x
j

)] � q4s⇤(x
i

, x
j

) (18)

s(x
i

, x
j

) � q4s⇤(x
i

, x
j

)�m

s
log(m2/�

c1

)

2T

min

(19)

For the upper bound, we can see that a node can contribute
to s(x

i

, x
k

) if it contributes to s⇤(x
i

, x
k

) and it uses no cor-
rupted measurements or if it does not contribute to s⇤(x

i

, x
k

)

and it contains a corrupted measurement. For the first case,
we will assume pessimistically that all of the nodes x

t

2 G
ik

contribute to s(x
i

, x
k

). For the latter, we again perform a worst
case analysis where we assume any x

t

/2 G
ij

for which either
d(x

i

, x
t

) or d(x
k

, x
t

) are corrupted contributes to s(x
i

, x
k

).
Thus any x

t

contributes with probability 1 � q2. If we write
s
2

(x
i

, x
k

) to denote the number of nodes x
t

/2 G
ij

that could
contribute to s(x

i

, x
k

), then by the same techniques as above,
we arrive at the following upper bound:

E[s
2

(x
i

, x
k

)]  (1� q2)(m� s⇤(x
i

, x
k

))

s
2

(x
i

, x
k

)  (1� q2)(m� s⇤(x
i

, x
k

))

+ m

s
log(m2/�

c2

)

2A

min

Where the second statement holds with probability � 1� �
c2

In order to ensure success of our clustering algorithm, we
need the lower bound for s(x

i

, x
k

) to be larger than the upper
bound for s(x

i

, x
k

).
Setting �

2

, �
c1

= �
c2

, we can now bound q as:

q2 � m

m+ s⇤(x
i

, x
j

)� s⇤(x
i

, x
k

)

+

r
1

2

log(m2/�
2

)

⇥
"
s⇤(x

i

, x
j

)

p
1/T

min

+ (m� s⇤(x
i

, x
k

))

p
1/A

min

m+ s⇤(x
i

, x
j

)� s⇤(x
i

, x
k

)

#

For this inequality to hold, we require that s⇤(x
i

, x
j

) �
s⇤(x

i

, x
k

), but this is always the case since s⇤(x
i

, x
j

) �
s⇤(x

i

, x
k

) � |lvs( ˆT
(1)

)|, i.e. the size of the smallest subtree.
To better illustrate the dependence between q and the

various parameters of the problem, we simplify the expression
using the following bounds (which are straightforward to
verify):

T

min

� m⌘̂

1 + (k � 1)⌘̂
(20)

A

min

� 2m⌘̂

1 + (k � 1)⌘̂
(21)

|lvs( ˆT
(1)

)| � m

1 + (k � 1)⌘̂
(22)

Using this bounds we arrive at the following lower bound
on q2:

q2 �
1 +

1+

p
2

2

q
log(m

2
/�2)(1+(k�1)⌘̂)

m⌘̂

1 +

1

1+(k�1)⌘̂

(23)
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Specifically, this means that the constant C
⌘̂,k

and c
⌘̂,k

in
the Lemma are:

C
⌘̂,k

=

1 + (k � 1)⌘̂

2 + (k � 1)⌘̂
(24)

c
⌘̂,k

=

(1 +

p
2)(1 + (k � 1)⌘̂)3/2

2

p
⌘̂(2 + (k � 1)⌘̂)

(25)

Plugging in these constants and reorganizing the expression
results in Equation 16. Both constants depend on both ⌘̂ and
k, however notice that C

⌘̂,k

< 1 and both C
⌘̂,k

and C
⌘̂,k

are
smaller for ⌘̂ close to 1. Thus we see that it is easier to cluster
more balanced trees.

The analysis for SPLIT is the same, except that we require q4
to be greater than the right hand side of above lower bound on
q2. Since this dependence is worse than the one for RISING,
we use this expression in our result.

Lemma 4.4 (Voting). Suppose that q6 > C
⌘̂,k

. Then with
probability � 1 � �

3

the voting phase of RISING and
SPLIT correctly partition the leaves into their subtrees as long
as

m > c
⌘̂,k

log(p/�
3

)

(q6 � C
⌘̂,k

)

2

(26)

for some constants c
⌘̂,k

, C
⌘̂,k

that depends on ⌘̂ and k.

Proof: The voting procedure works by taking one node
from each cluster in C and computing the quartet between
those three nodes and the node we are trying to place, x

i

.
Suppose that x

i

belongs in cluster C⇤; then it must be the case
that C⇤ 2 C or there exists some C 0 2 C such that C⇤ ⇢ C 0.
This latter case can happen if we merge two subtrees in the
clustering phase.

Since C always has cardinality 3 in Algorithm 5, when we
draw one node from each of the three clusters one of two
things can happen: If we draw a node from C⇤ then in the
absence of noise, this quartet would correctly vote that x

i

belongs in the cluster C 0. If on the other hand, we draw a
node from C 0 \ C⇤, then in the absence of noise this quartet
would vote that x

i

forms a star. Our analysis must consider
both of these scenarios.

Specifically, let Z
i

be the indicator that the ith quartet test
correctly voted that x

i

belongs in C 0. We perform z , | ˆT
(1)

|
rounds of voting and by application of a Hoeffding’s Inequality
and a union bound:

P
 
|C⇤|
|C 0| q

6 � 1

z

zX

i=1

Z
i

> ✏

!
 exp{1

c
m✏2} (27)

Z , 1

z

zX

i=1

Z
i

>
|C⇤|
|C 0| q

6 �
r

c log(p/�
3

)

m
(28)

for each x
i

2 X \M for some constant c that depends on ⌘̂
and k (c = 1/|lvs( ˆT

(1)

)|  1 + (k � 1)⌘̂) . We see that with
probability �

3

, the fraction of correct votes is bounded from
below as long as m = !(

p
log p) so that the second expression

! 0 as p!1.

We will need a similar concentration bound on the number
of votes that form a star. Define W

i

to be the indicator that the
ith quartet test correctly forms a star. By a similar argument
we see that with probability � 1� �

3

:

W , 1

z

zX

i=1

W
i

� |C 0|� |C⇤|
|C 0| q6 �

r
c log(p/�

3

)

m
(29)

for all x
i

2 X \M .
To guarantee that we place x

i

correctly, we will pessimisti-
cally assume that every vote not for C 0 and not for a star will
vote for the same C 2 C, C 6= C 0. Thus the fraction of votes
for C is 1 � Z �W and we require that Z > 1 � Z �W .
Some algebra shows that this is true if:

q6 >
|C 0|

|C 0|+ |C⇤| + 3

r
c log(p/�

3

)

m
(30)

Inverting this equation gives us the lower bound on m in the
Lemma. The constant C

⌘̂,k

is exactly |C0|
|C0|+|C⇤| 

1+(k�1)⌘̂

2+(k�1)⌘̂

which is the same as the constant in Lemma 4.3.

A. Recovering One Split

Each time we call RISING or SPLIT we attempt to recover
one internal node of the tree. In terms of dependence on m,
we showed above that as long as m is sufficiently large, the
sampling phase will result in a new balance factor ⌘̂ that is
not too different from the original balance factor ⌘ and that
Single Linkage will produce clusters that reflect the subtrees.
Combining the bounds on m from all three phases, we have
the following lower bound on m:

m > c
⌘̂,k

log(pm2/�)

(q6 � C
⌘̂,k

)

2

(31)

And the restrictions on the probability of an uncorrupted
entry arise from the clustering and voting phases, but the
voting phase’s condition is more stringent. We therefore need
q6 > C

⌘̂,k

Finally, we require that the balance factor of the tree ⌘ =

O(1) so that ⌘̂ will also be a constant for large enough m with
high probability.

Putting these conditions together, we can characterize the
dependence on m and p under which successful recovery of
a single split is possible. Specifically, we have that if m =

⌦(log(p/�)), then with probability � 1� � (where � , �
1

+

�
2

+ �
3

), we correctly recover one internal node.

B. Recovering All Splits

There are at most p internal nodes in the tree. To recover
all of these nodes with probability 1� o(1), we set each �

i

=

O(1/p), and again characterize the dependence between m
and p. In the sampling phase, we require that m = !(log p) to
ensure that ⌘̂ does not grow with p. In clustering, we similarly
require m = !(log(m2p)). Finally, in the voting phase, we see
that m = !(log(p)). These lower bounds determine conditions
for successful recovery of the entire tree.
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