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Abstract

This thesis explores the power of interactivity in unsupervised machine learning
problems. Interactive algorithms employ feedback-driven measurements to reduce
data acquisition costs and consequently enable statistical analysis in otherwise in-
tractable settings. Unsupervised learning methods are fundamental tools across a
variety of domains, and interactive procedures promise to broaden the scope of sta-
tistical analysis. We develop interactive learning algorithms for three unsupervised
problems: subspace learning, clustering, and tree metric learning. Our theoretical
and empirical analysis shows that interactivity can bring both statistical and com-
putational improvements over non-interactive approaches. An over-arching thread
of this thesis is that interactive learning is particularly powerful for non-uniform
datasets, where non-uniformity is quantified differently in each setting.

We first study the subspace learning problem, where the goal is to recover or
approximate the principal subspace of a collection of partially observed data points.
We propose statistically and computationally appealing interactive algorithms for
both the matrix completion problem, where the data points lie on a low dimensional
subspace, and the matrix approximation problem, where one must approximate the
principal components of a collection of points. We measure uniformity with the
notion of incoherence, and we show that our feedback-driven algorithms perform
well under much milder incoherence assumptions.

We next consider clustering a dataset represented by a partially observed simi-
larity matrix. We propose an interactive procedure for recovering a clustering from a
small number of carefully selected similarity measurements. The algorithm exploits
non-uniformity of cluster size, using few measurements to recover larger clusters and
focusing measurements on the smaller structures. In addition to coming with strong
statistical and computational guarantees, this algorithm performs well in practice.

We also consider a specific metric learning problem, where we compute a latent
tree metric to approximate distances over a point set. This problem is motivated by
applications in network tomography, where the goal is to approximate the network
structure using only measurements between pairs of end hosts. Our algorithms use
an interactively chosen subset of the pairwise distances to learn the latent tree metric
while being robust to either additive noise or a small number of arbitrarily corrupted
distances. As before, we leverage non-uniformity inherent in the tree metric structure
to achieve low sample complexity.

Finally, we study a classical hypothesis testing problem where we focus on show
fundamental limits for non-interactive approaches. Our main result is a precise char-
acterization of the performance of non-interactive approaches, which shows that, on
particular problems, all non-interactive approaches are statistically weaker than a
simple interactive one. These results bolster the theme that interactivity can bring
about statistical improvements in unsupervised problems.
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Chapter 1

Introduction

Interactive learning is a framework for statistical analysis in which the inference procedure inter-
acts with the data acquisition mechanism to make feedback-driven measurements. This frame-
work, which is also referred to as active learning, adaptive sampling, or adaptive sensing, has
become increasing popular in recent years as it often significantly reduces overhead associated
with data collection. On both theoretical and empirical fronts, interactive learning has been suc-
cessfully applied to a variety of supervised machine learning [19, 21, 22, 23, 29, 30, 64, 65,
67, 102, 103, 104] and signal processing problems [17, 107, 124, 130, 161]. However, inter-
active approaches have not experienced the same degree of success for unsupervised learning,
and our understanding in this area is quite limited. This thesis addresses this deficiency with an
exploration of the power of interactive approaches for unsupervised learning.

Unsupervised learning refers to a broad class of learning problems where the dataset is not en-
dowed with label information and the explicit goal is to identify some structural characteristics
of the data. This contrasts with supervised problems where data points are associated with la-
bels, and the goal is to learn an accurate mapping from data points to their labels. Examples of
unsupervised learning range from clustering and manifold learning, where the goal is to capture
locality information, to hypothesis testing, where the goal is to understand the data-generating
process more generically. Unsupervised learning plays an important role in exploratory data
analysis, as it provides the statistician with some basic understanding of the dataset.

Unfortunately, unsupervised learning tasks, formulations, and algorithms are extremely varied,
making a unified treatment challenging. Our study of interactive approaches for unsupervised
learning therefore focuses on several important and representative examples rather than a general
treatment. Our choices of examples are motivated by two considerations: the learning problem
should be widely studied and practically relevant, and there should be concrete applications
where an interactive approach is feasible. Our experience is that ideas in the development of
these examples will be applicable in other unsupervised learning problems.

Through these examples, we show that interactive learning offers three distinct advantages. First,
interactive algorithms have lower sample requirements than non-interactive ones, and are there-
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fore statistically more efficient. Secondly, interactive approaches are particularly powerful when
the data exhibits high degrees of non-uniformity, as the sampling mechanism can focus mea-
surements to accurately capture these aspects of the data. Lastly, interactivity offers a computa-
tional improvement as these algorithms are often both theoretically and empirically faster than
non-interactive ones. These claims are supported by the several examples in this thesis. More
formally, our thesis statement is:

Thesis statement: Interactive data acquisition facilitates statistically and computationally effi-
cient unsupervised learning algorithms that are particularly well-suited to handle non-uniform
datasets.

In the remainder of this chapter, we describe these three advantages in some more detail and then
turn to an overview of the main results. We conclude this chapter with a broad discussion of
related work on interactive learning.

1.1 Overarching Themes

In the context of unsupervised learning, we claim that interactive approaches offers three distinct
advantages over non-interactive ones. These are:

1. Statistical efficiency: The main appeal of interactive learning is statistical efficiency. Intu-
itively, by incorporating feedback into the measurement process, an interactive algorithm
should be able to achieve suitable statistical performance with fewer measurements than
a non-interactive one. Indeed, interactive learning is a strictly more powerful model, but
there are many documented examples where interactivity is known to not provide signifi-
cant statistical improvements over non-interactive approaches [11, 63, 114]. In this thesis,
we study a number of unsupervised learning problems and show that interactivity in fact
does lead to significantly improved statistical performance.
In the machine learning community, statistical efficiency is usually quantified by sample
complexity, which is the number of samples required to achieve a certain accuracy in a
learning task. In the signal processing literature, a signal-to-noise ratio, which measures
the problem difficulty, is more commonly used. We use both notions in this thesis, depend-
ing on the problem of study, but make fair comparisons to other approaches throughout.

2. Computational efficiency: Given the increasing size and complexity of data sets, com-
putational efficiency is an important consideration when designing learning algorithms. In
addition to statistical efficiency, we also argue that interactive approaches can be compu-
tationally more efficient than non-interactive ones, particularly in unsupervised settings.
This claim is challenging to argue theoretically, as it requires establishing a computational
lower bound on non-interactive algorithms, and proving such lower bounds is notoriously
hard. We instead compare our algorithms against non-interactive ones, both theoretically,
in their asymptotic running times, and empirically, via extensive simulation.
We find it surprising that interactive approaches actually lead to computational improve-
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ments over non-interactive ones, as many algorithms for interactive supervised learning do
not demonstrate this phenomenon [20, 107, 174]. One exception is the algorithm due to
Beygelzimer et al. [30], which is often faster than passive learning in practice, but reduces
active learning to a possibly NP-hard zero-one loss empirical risk minimization problem.
One reason for this is that these algorithms perform sophisticated computations to select
future measurements, while we find that, in the unsupervised problems considered here,
much simpler sampling techniques suffice. These simple sampling approaches, along with
the fact that interactive algorithms can ignore large fractions of the dataset, lead to the
computational improvements demonstrated in this thesis.

3. Coping with non-uniformity: Lastly, we find that interactive learning algorithms are
particularly well-suited to data sets with high degrees of non-uniformity. While non-
uniformity is quantified differently in each of the examples considered in this thesis, our
algorithms can quickly identify these non-uniformities and focus measurements to accu-
rately capture these aspects of the data. On the other hand, non-interactive approaches
have high sample complexities for these non-uniform problems, as one needs many mea-
surements in certain regions to achieve suitable accuracy. Formalizing this argument, we
show that interactive approaches have significantly better statistical performance than non-
interactive ones on these non-uniform problems.

1.2 Overview of Results

In this thesis we study four unsupervised learning problems and develop interactive learning
algorithms for these problems. The first three problems can all be formalized as matrix inference
problems; given feedback-driven access to the entries of a d⇥n matrix X which may be corrupted
with noise, we are interested in recovering some structural property of the matrix. We propose
interactive algorithms to recover three different structural properties and compare against non-
interactive approaches, ones that either observe the entire matrix or a subset of entries acquired
prior to any computation. In all three settings, we show that our interactive algorithms can
significantly outperform non-interactive ones, in line with the over-arching themes of this thesis.

1.2.1 Interactive Subspace Learning

In the subspace learning problem, the data matrix X corresponds to a collection of n points in
d dimensions, and the goal is to recover a subspace of Rd that effectively captures the dataset.
When the data matrix is fully observed, it is well known that principal components analysis
(PCA) identifies a subspace that optimally approximates the data matrix [83]. In the missing
data setting that we consider here, this is referred to as the matrix completion or the matrix
approximation problem [43, 72, 75, 97, 101, 144].

In Chapter 2, we study three versions of the subspace learning problem and propose novel al-
gorithms that employ interactive sampling to obtain strong performance guarantees. We first
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consider the setting where the data points lie exactly on a r-dimensional subspace, which is re-
ferred to as the (noiseless) matrix completion problem. Our algorithm interactively identifies
entries that are highly informative for learning the column space of the matrix and, consequently,
it succeeds even when the row space is highly non-uniform (according to a standard definition of
non-uniformity), in contrast with non-interactive approaches. We show that one can exactly re-
cover a d⇥n matrix of rank r from merely ⌦((d+n)r log2(r)) matrix entries using an algorithm
with running time that is linear in the matrix size, max{d, n}, with a mild polynomial depen-
dence on the rank r. In addition to significantly relaxing uniformity assumptions, this algorithm
nearly matches the best known sample complexity and is the fastest known algorithm for matrix
completion.

We generalize this algorithm to the tensor completion problem, where the data is instead a low-
rank tensor. We show that a recursive application of our matrix completion algorithm recovers a
rank r order T tensor X 2 R⌦T

i=1

di using ⌦(rT�1T
P

T

i=1

d
i

log

2

(r)) tensor entries, which is the
best known sample complexity for this problem [111, 132]. As with the algorithm for the matrix
case, this algorithm relaxes uniformity assumptions and is extremely fast.

Lastly, we consider the problem of constructing a low rank approximation to a high-rank input
matrix from interactively sampled matrix entries. This is referred to as the matrix approxima-
tion problem. We propose a simple algorithm that truncates the singular value decomposition of
a zero-filled version of the input matrix. The algorithm computes an approximation that is nearly
as good as the best rank-r approximation to the input matrix using O(nrµ log

2

(n)) samples,
where µ is a uniformity parameter on the matrix columns. We eliminate uniformity assumptions
on the row space of the matrix while achieving similar statistical and computational performance
to non-interactive methods.

We demonstrate the statistical and computational efficiency of all three of these procedures with
extensive empirical evaluation. These results appear in the papers [121, 122].

1.2.2 Interactive Hierarchical Clustering

We consider a similarity-based clustering formulation where we are given an n ⇥ n symmetric
matrix X of pairwise similarities between n objects. In flat clustering problems the goal is
to identify a partitioning of the objects so that pairs of objects in the same group have high
similarity and pairs of objects in different groups have low similarity. In hierarchical clustering
problems, the goal is to identify this partitioning structure at multiple resolutions. We aim to
recover hierarchical cluster structures when the similarity matrix X is only partially observed.

In Chapter 3, we propose interactive learning algorithms for hierarchical clustering from partially
observed pairwise similarity information. Our algorithm runs spectral clustering on a subsampled
version of the similarity matrix to resolve the larger cluster structure and then focuses measure-
ments to resolve the finer partitions. We show that this algorithm recovers all clusters of size
⌦(log n) using O(n log

2 n) similarities and runs in O(n log

3 n) time for a dataset of n objects.
In comparison, hierarchical spectral clustering on the fully observed similarity matrix achieves
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the same resolution but uses all O(n2

) similarities and runs in O(n2

) time [16]. This algorithm
is most effective when trying to recover both the large clusters at the top of the hierarchy and the
small clusters at the bottom of the hierarchy, or, in others words, when the cluster structure is
highly non-uniform.

We complement this algorithmic result with an information-theoretic study of the hierarchical
clustering problem. The most important result in this study is a necessary condition for any non-
interactive algorithm to recover a hierarchical clustering. Comparing this necessary condition
with the sufficient condition developed by our interactive algorithm, we mathematically certify
the statistical advantage offered by interactivity.

We evaluate this algorithm with a detailed empirical study on simulated and real clustering data
sets. We compare with several popular clustering algorithms and show that our proposed algo-
rithm does lead to statistical and/or computational improvements in many cases. This algorithm
and its analysis appear in the paper [123]. The information-theoretic study is new here.

1.2.3 Interactive Latent Tree Metric Learning

In metric learning problems, X 2 Rn⇥n is a distance matrix between n points, so that the (i, j)th
entry is the distance between the ith and jth object. Broadly, the goal is to impute distances
between points, and this is typically done by embedding the points into some structured metric
space. In the instantiation of this problem that we study, we aim to recover a latent tree metric,
which associates each object to a leaf of some weighted tree and approximates distances between
objects via the distance along the tree. This problem is motivated by research in communication
networks showing that packet latencies can be well-approximated by latent tree metrics.

In Chapter 4, we present two algorithms that use interactively sampled pairwise distance mea-
surements to construct a latent tree whose path distances approximate those between the objects.
Our first algorithm accommodates measurements perturbed by additive noise, while our second
considers a novel noise model that captures missing measurements and the datasets deviations
from a tree topology. Both algorithms provably use O(n polylog n) pairwise measurements to
construct a tree approximation on n end hosts and run in nearly linear time. We present simulated
and real-world experiments to evaluate both algorithms. These results appear in the paper [120].

1.2.4 Passive and Interactive Sampling in Normal Means Inference

The last problem we consider does not fall into the matrix inference framework. We study a
structured hypothesis testing problem where the goal is to use data generated from a gaussian
distribution to identify which vector, out of a finite collection, is the mean vector. We consider
algorithms that are given a sensing budget and asked to allocate measurements across the coor-
dinates, where interactive algorithms can make this allocation in a feedback-driven manner.
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Our focus is on understanding how structural assumptions about the collection of mean vec-
tors affects statistical performance, and most of the results pertain to non-interactive approaches.
Specifically, for any non-interactive allocation strategy, we give necessary and sufficient con-
ditions under which the identification of the mean vector is possible. We show through many
concrete examples, that this analysis leads to optimal non-interactive allocation strategies and
inference procedures. We also give a concrete example where a simple interactive procedure
significantly outperforms all non-interactive ones.

In this chapter, we also initiate a deeper investigation into the design of optimal estimators. In
this direction, we give a sufficient condition, which depends on the structure of the collection of
vectors, for the exact optimality of the maximum likelihood estimator. We also design a heuristic
algorithm for improving on the maximum likelihood estimator in the cases when it is suboptimal.
We provide synthetic examples demonstrating the importance of this improvement.

1.3 Related Work

In this section we provide a broad summary of related work on interactive learning. Research
on interactive learning is extremely diverse, in part due to the intuitive appeal of the learning
paradigm, and we cannot hope to cover all of the work here. Instead we focus attention on the
theoretical results.

We categorize the research based on types of learning problems addressed:

1. Classification and Regression: When focusing on classification or regression problems,
interactive approaches are typically referred to as active learning [57]. In active learning,
the learner interacts with the dataset by querying for the response or label of data points.
There are three ways of realizing this interaction: pool-based [62], where the learner has
access to a large number of unlabeled examples; stream-based [57, 91], where unlabeled
examples are fed one-by-one to the learner and it decides to query for a label; and query
synthesis [8, 9], where the learner can construct examples to be labeled. Most of the recent
attention has focused on either pool-based or stream-based active learning, as the third
model is fairly unnatural.
The literature on active learning alone is quite vast, but can roughly be categorized along
several axes. In the context of binary classification, researchers have considered hypothesis
classes ranging from linear separators through the origin [20, 66, 91] to classes of bounded
Vapnik-Chervonenkis dimension [30, 102]. The choice of noise model also plays a role,
with choices ranging from noise-free or realizable [62, 63, 66, 91] to parameterized noise
models [44, 141], to the most general agnostic case [22, 30, 114]. Lastly apart from these
works, there is a sequence of papers on bayesian active learning where a prior distribu-
tion is placed on the true hypothesis, and query decisions are made through computations
involving the posterior [96, 133].
We refer the reader to Hanneke’s comprehensive treatment of the theoretical issues in ac-
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tive learning [105]. For a more applied perspective, many algorithmic techniques for active
learning are outlined in the survey by Settles [153].

2. Sequential Decision Making: In this class of problems, a learner makes a series of ac-
tions, possibly based on situational context, and receives reward based on the quality of
the choices made, possibly depending on context. The goal broadly is to obtain large re-
wards, which amounts to learning how to choose high-quality actions. These problems fall
into the interactive learning framework because the actions that a learner makes influence
the reward feedback provided, and also possibly influence the future situations. There-
fore a learner must tradeoff between choosing actions that provide information about the
environment and those that provide large rewards.
The simplest version of the sequential decision making problem is the multi-arm bandit
problem. In this problem, there are a fixed set of actions and no situational context, so the
goal reduces to identifying the best fixed action. An excellent survey of results in this line
of research is provided by Bubeck and Cesa-Bianchi [38].
Incorporating situational information into the multi-arm bandit framework yields the con-
textual bandit problem. Here the goal now amounts to finding a policy that maps contexts
into actions while achieving high levels of reward. A number of recent algorithms address
both parametrized [55, 89, 150], where the reward for an action can be reliable predicted
based on some features, and agnostic [4, 13, 31, 78, 127], where no features are available,
versions of this problem.
Lastly, the most challenging version of the sequential decision making problem is rein-
forcement learning, where the actions of the learner affect not only the reward and feed-
back, but also the future situation or context. In some models for this problem, we know
of algorithms that achieve nearly optimal statistical performance [14]. An overview of the
main techniques for reinforcement learning problems is provided by Sutton and Barto [26].

3. Unsupervised Learning There are also a plethora of results on interactive learning for
unsupervised problems. The majority of these results stem from the statistics and signal
processing communities and focus on various forms of hypothesis testing problems. Some
more recent results from the machine learning community address more classical unsuper-
vised problems such as clustering and subspace learning.
In the statistics literature, interactive learning is typically referred to as sequential exper-
imental design and includes the seminal works of Wald [169], Chernoff [53], and Rob-
bins [146]. The techniques are strikingly similar to those for the multi-arm bandit problem,
and indeed both lines of research stem from the initial works of Robbins and Lai [125].
In the signal processing community, interactive learning is typically referred to as adaptive
sensing, and the typical goal is multiple hypothesis testing from repeated direct or com-
pressive measurements. When individual hypothesis can be queried, the distilled sensing
algorithm [107] is known to outperform non-adaptive sampling schemes, and this work has
been extended to some structured settings [161]. When compressive measurements can be
taken, results under specific structural constraints are known [17, 124], and unstructured
lower bounds show that significant performance improvements over non-adaptive proce-
dures are not possible [11].
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Interactive approaches have also been considered for more classical unsupervised learn-
ing problems, with most of the focus on clustering and kernel learning. A number of
algorithms have been proposed for interactive clustering both in hierarchical and flat set-
tings [15, 18, 27, 87], although many of these approaches consider interactive supervision
in the from of constraints on the clustering rather than interactivity with object features or
similarities as we do. The advent of crowdsourcing platforms has also lead to research on
learning via interaction with crowds of workers [160]. Lastly, interactive learning is the de
facto standard for problems in network tomography, including topology identification [84],
topology-aware clustering [56], and other tasks [45].
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Chapter 2

Interactive Matrix Completion

In this chapter, we develop interactive algorithms for low rank matrix and tensor completion and
matrix approximation. In the completion problem, we would like to exactly recover a low rank
matrix (or tensor) after observing only a small fraction of its entries. In the approximation prob-
lem, rather than exact recovery, we aim to find a low rank matrix that approximates, in a precise
sense, the input matrix, which need not be low rank. In both problems, we are only allowed to
observe a small number of matrix entries, although these entries can be chosen sequentially and
in a feedback-driven manner.

The measure of uniformity in this chapter is the notion of incoherence which pervades the ma-
trix completion literature. We show that interactive sampling allows us to significantly relax the
incoherence assumption. Previous analyses show that if the energy of the matrix is spread out
fairly uniformly across its coordinates, then uniform-at-random samples suffice for completion or
approximation. In contrast, our work shows that interactive sampling algorithms can focus mea-
surements appropriately to solve these problems even if the energy is non-uniformly distributed.
Handling non-uniformity is essential in a variety of problems involving outliers, for example
network monitoring problems with anomalous hosts, or recommendation problems with popular
items. This is a setting where non-interactive algorithms fail, as we will show.

We make the following contributions:

1. For the matrix completion problem, we give a simple algorithm that exactly recovers an
n⇥n rank r matrix using at most O(nrµ

0

log

2

(r)) measurements where µ
0

is the coherence
parameter on the column space of the matrix (Corollary 2.2). This algorithm outperforms
all existing results on matrix completion both in terms of sample complexity and in the fact
that we place no assumptions on the row space of the matrix. The algorithm is extremely
simple, runs in ˜O(nr2) time, and can be implemented in one pass over the matrix.

2. We derive a lower bound showing that in the absence of row-space incoherence, any non-
interactive scheme must see ⌦(n2

) entries (Theorem 2.3). This concretely demonstrates
the power of interactivity in the matrix completion problem.
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3. For the tensor completion problem, we show that a recursive application of our matrix com-
pletion algorithm can recover an order-T , n⇥ . . .⇥n tensor using O(nT 2rT�1µT�1

0

log

2 r)
interactively-obtained samples (Theorem 2.1). This algorithm significantly outperforms
all existing results on tensor completion and as above, is quite simple.

4. We complement this with a necessary condition for tensor completion under random sam-
pling, showing that our interactive strategy is competitive with any approach based on
uniform sampling (Theorem 2.4). This is the first sample complexity lower bound for ten-
sor completion, although it is weaker than the lower bound for the matrix completion case
in Corollary 2.2.

5. For matrix approximation, we analyze an algorithm that, after an interactive sampling
phase, approximates the input matrix by the top r ranks of an appropriately rescaled zero-
filled version of the matrix. We show that with just O(nrµ log

2

(n)) samples, this approx-
imation is competitive with the best rank r approximation of the matrix (Theorem 2.5).
Here µ is a coherence parameter on each column of the matrix; as before we make no
assumptions about the row space of the input. Again, this result significantly outperforms
existing results on matrix approximation from non-interactively collected samples.

This chapter is organized as follows: we conclude this introduction with some basic definitions
and then turn to related work in Section 2.1. The main results for the exact completion problems
are given in Section 2.2 while our matrix approximation algorithm and analysis are in Section 2.3
Proofs are provided in Section 2.4 and we provide some simulation that validate our theoretical
results in Section 2.5. We conclude the chapter in Section 2.6.

2.0.1 Preliminaries

In this chapter, we are interested in recovering, or approximating, a d⇥n matrix X given a budget
of M observations, where we assume d  n. We denote the columns of X by x

1

, . . . , x
n

2 Rd

and use t to index the columns. We use x
t

(i) to denote the ith coordinate of the column x
t

.

We use capital letters to denote subspaces and we overload notation by using the same symbol
to refer to a subspace and any orthonormal basis for that subspace. Specifically, if U ⇢ Rd is
a subspace with dimension r, we may use U to refer to a d ⇥ r matrix whose columns are an
orthonormal basis for that subspace. We use U? to denote the orthogonal complement to the
subspace U and P

U

to refer to the orthogonal projection operator onto U .

As we are dealing with missing data and sampling, we also need some notation for subsampling
operations. Let [d] denote the set {1, . . . , d} and let ⌦ be a list of m values from [d], possibly
with duplicates (One can think of ⌦ as a vector in [d]m and ⌦(j) is the jth coordinate of this
vector). Given such a list ⌦, we use two different subsampling operations: x

⌦

2 Rm is the vector
formed putting x(i) in the jth coordinate if ⌦(j) = i and R

⌦

x is a zero-filled rescaled version
of x with R

⌦

x(i) = 0 if i /2 ⌦ and R
⌦

x(i) = dx(i)/|⌦| if i 2 ⌦.

For a r-dimensional subspace U ⇢ Rd, U
⌦

2 Rm⇥r is a matrix formed by doing a similar
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subsampling operation to the rows of any orthonormal basis for the subspace U , e.g. the jth row
of U

⌦

is the ith row of U if ⌦(j) = i. Note that U
⌦

, and even the span of the columns of U
⌦

,
may not be uniquely defined, as they both depend on the choice of basis for U . Nevertheless, we
will use P

U

⌦

to denote the projection onto the span of any single set of columns constructed by
this subsampling operation.

These definitions extend to the tensor setting with slight modifications. Let X 2 Rn

1

⇥...⇥nT

denote an order T tensor with canonical decomposition:

X =

rX

k=1

a(1)
k

⌦ a(2)
k

⌦ . . .⌦ a(T )

k

(2.1)

where ⌦ is the outer product. Define rank(X) to be the smallest value of r that establishes this
equality. Note that the vectors {a(t)

k

}r
k=1

need not be orthogonal, nor even linearly independent.

We then use the vec operation to unfold a tensor into a vector and define the inner product
hx, yi = vec(x)Tvec(y). For a subspace U ⇢ R⌦ni , we write it as a (

Q
n
i

)⇥ d matrix whose
columns are vec(u

i

), u
i

2 U . We then define projections and subsampling as in the vector case.

We will frequently work with the truncated singular value decomposition (SVD) of X which is
given by zero-ing out its smaller singular values. Specifically, write X = U

r

⌃

r

V T

r

+U�r

⌃�r

V T

�r

where [U
r

, U�r

] (respectively [V
r

, V�r

]) forms an orthonormal matrix and ⌃

r

= diag(�
1

, . . . , �
r

),
⌃�r

= diag(�
r+1

, . . . , �
d

) are diagonal matrices with �
1

� . . . � �
r

� �
r+1

� . . . � �
d

. The
truncated singular value decomposition is X

r

= U
r

⌃

r

V T

r

, which is the best rank-r approximation
to X both in Frobenius and spectral norm [83].

In the matrix completion problem, where we aim for exact recovery, we require that X has rank
at most r, meaning that �

r+1

= . . . = �
n

= 0. Thus X = X
r

, and our goal is to recover X
r

exactly from a subset of entries. Specifically, we focus on the 0/1 loss; given an estimator ˆX for
X , we would like to bound the probability of error:

R
01

(

ˆX) , P
⇣
ˆX 6= X

⌘
. (2.2)

In the approximation problem, we relax the low rank assumption but are only interested in ap-
proximating the action of X

r

. The goal is to find a rank r matrix ˆX that minimizes:

R(

ˆX) = kX � ˆXk
F

.

The matrix X
r

is the global minimizer (subject to the rank-r constraint), and our task is to ap-
proximate this low rank matrix effectively. Specifically, we will be interested in finding matrices
ˆX that satisfy excess risk bounds of the form:

R(

ˆX) , kX � ˆXk
F

 kX �X
r

k
F

+ ✏kXk
F

(2.3)

Rescaling the excess risk term by kXk
F

is a form of normalization that has been used before in
the matrix approximation literature [75, 76, 92, 149]. While bounds of the form (1+✏)kX�X

r

k
F
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may seem more appropriate when the bottom ranks are viewed as noise term, achieving such a
bound seems to require highly accurate approximations of the SVD of the input matrix [77],
which is not possible given the extremely limited number of observations in our setting. Equa-
tion 2.3 can be interpreted by dividing by kXk

F

, which shows that ˆX captures almost as large a
fraction of the energy of X as X

r

does.

Apart from the observation budget M and the approximation rank r, the other main quantity gov-
erning the difficulty of these problems is the subspace coherence parameter. For a r dimensional
subspace U of Rd, define

µ(U) =

d

r
max

i2[d]
kP

U

e
i

k2
2

,

which is a standard measure of subspace coherence [144]). The quantity µ
0

, µ(U
r

), which
is bounded between 1 and d/r, measures the correlation between the column space U

r

and any
standard basis element. When this correlation is small, the energy of the matrix is spread out
fairly uniformly across the rows of the matrix, although it can be non-uniformly distributed
across the columns. We use the column-space coherence µ

0

instead of the row-space analog, and
we will see that the parameter µ

0

controls the sample complexity of our procedure.

Such an incoherence assumption does not translate appropriately to the approximate recovery
problem, since the matrix is no longer low rank, but some measure of uniformity is still necessary.
We parameterize the problem by a quantity related to the usual definition of incoherence:

µ = max

t2[n]
d||x

t

||21
||x

t

||2
2

,

which is the maximal column coherence. Here, we make no stochastic assumptions, but notice
that this is a restriction on the higher ranks of the matrix. We also make no assumptions about
the row space of the matrix1.

2.1 Related Work

The literature on low rank matrix completion and approximation is extremely vast and we do not
attempt to cover all of the existing ideas. Instead, we focus on the most relevant lines of work to
our specific problems. We briefly mention some related work on adaptive sensing.

2.1.1 Related work on Matrix and Tensor Completion

Due to its widespread applicability, the matrix completion problem has received considerable
attention in recent years. A series of papers [42, 43, 50, 97, 144] establish that ⌦(nrµ0

0

log

2

(n))
randomly drawn samples are sufficient for the nuclear norm minimization program to exactly

1As before this could equivalently be the column space with assumption on the maximal row coherence.
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identify an n⇥n matrix with rank r. Here µ0
0

, max{µ(U
r

), µ(V
r

)} is the coherence parameter,
which measures the uniformity of both the row and column spaces of the matrix. Candès and
Tao [43] show that nuclear norm minimization is essentially optimal with a ⌦(nrµ

0

log(n)) lower
bound for uniform-at-random sampling. In contrast, the guarantee for our interactive procedure
scales linearly on µ

0

= µ(U
r

), so our algorithm succeeds even when the row space is highly
coherent. This is a regime where non-interactive provably fail, as we will show.

There is also a line of work analyzing alternating minimization-style procedures for the matrix
completion problem [106, 112, 116]. While the alternating minimization algorithm is a more
elegant computational approach, the best sample complexity bounds to-date are either worse by
at least a cubic factor in the rank r or have undesirable dependence on the matrix condition
number [116]. In practice however, alternating minimization performs as well as nuclear norm
minimization, so this sub-optimality appears to be an artifact of the analysis.

In a similar spirit to our work, Chen et al. [52] developed an interactive algorithm which suc-
ceeds in the absence of row-space incoherence using ⌦(nrµ

0

log

2

(n)) samples. In compar-
ison, we operate under the same assumption but achieve an improved sample complexity of
⌦(nrµ

0

log

2

(r)). A recent paper of Jin and Zhu [113] further improves slightly on this bound,
achieving ⌦(nr log(r)) sample complexity, but they assume that both the row and column space
are incoherent. Interestingly, their algorithm uses non-interactive but non-uniform sampling.

Tensor completion, a natural generalization of matrix completion, is less studied than the ma-
trix case. One challenge stems from the NP-hardness of computing most tensor decomposi-
tions, pushing researchers to study alternative structure-inducing norms in lieu of the nuclear
norm [93, 132, 162, 163, 164, 173]. Of these, only Mu et al. [132] and Yuan and Zhang [173]
provide sample complexity bounds for the noiseless setting. Mu et al. [132] show that ⌦(rnT/2

)

random linear measurements suffice to recover a rank r order-T tensor. Yuan and Zhang [173]
instead show that ⌦(r1/2n3/2

) entries suffice to recover a rank r third-order tensor with incoher-
ent subspaces, provided the rank is small. In contrast, the sample complexity of our algorithm is
linear in dimension n, improving significantly on these non-interactive results.

2.1.2 Related work on Matrix Approximation

A number of authors have studied matrix completion with noise and under weaker assumptions.
The most prominent difference between our work and all of these is a relaxation of the main
incoherence assumptions. Both Candes and Plan [41], and Keshavan et al. [117] require that
both the row and column space of the matrix of interest is highly incoherent. Negahban and
Wainwright [134] instead use a notion of spikiness, but that too places assumptions on the row
space of interest. Koltchinskii et al. [119] consider matrices with bounded entries, which is
related to the spikiness assumption. In comparison, our results make essentially no assumptions
about the row space, leading to substantially more generality. This is the thesis of this work;
one can eliminate row space assumptions (uniformity assumptions) in matrix recovery problems
through interactive sampling.
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Another close line of work is on matrix sparsification [1, 2, 12]. Here, the goal is to zero out
many entries of a matrix while preserving global properties such as the principal subspace. The
main difference from matrix completion is that the entire matrix is observed, which allows one
to relax incoherence assumptions. The only result from this line that does not require knowledge
of the matrix is a random sampling scheme of Achlioptas and McSherry [1], but it is only com-
petitive with matrix completion when the input has entries of fairly constant magnitude [119].
Interestingly, this requirement is essentially the same as the spikiness assumption [134] and the
bounded magnitude assumption [119] in the matrix completion literature.

Several techniques have been proposed for matrix approximation in the fully observed setting,
optimizing computational complexity or other objectives. A particularly relevant series of papers
is on the column subset selection (CSS) problem, where the span of several judiciously chosen
columns is used to approximate the principal subspace. One of the best approaches involves
sampling columns according to the statistical leverage scores, which are the norms of the rows
of the n ⇥ r matrix formed by the top r right singular vectors [36, 37, 77]. Unfortunately, this
strategy does not seem to apply in the missing data setting, as the distribution used to sample
columns – which are subsequently used to approximate the matrix – depends on the unobserved
input matrix. Approximating this distribution seems to require a very accurate estimate of the
matrix itself, and this initial estimate would suffice for the matrix approximation problem. This
difficulty also arises with volume sampling [100], another popular approach to CSS; the sampling
distribution depends on the input matrix and we are not aware of strategies for approximating this
distribution in the missing data setting.

In terms of interactive sampling, a number of methods for recovery of sparse, structured, signals
have been shown to outperform non-interactive methods [17, 107, 124, 130, 161]. While having
their share of differences, these methods can all be viewed as either binary search or local search
methods, that iteratively discard irrelevant coordinates and focus measurements on the remainder.
In particular, these methods rely heavily on the sparsity and structure of the input signal, and
extensions to other settings have been elusive. While a low rank matrix is sparse in its eigenbasis,
the search-style techniques from the signal processing community do not seem to leverage this
structure effectively and these approaches do not appear to be applicable to our setting.

Some of these interactive sampling efforts focus specifically on recovering or approximating
highly structured matrices, which is closely related to our setting. Tanczos and Castro [161] and
Balakrishnan et al. [17] consider variants of biclustering, which is equivalent to recovering a
rank-one binary matrix from noisy observations. Singh et al. [158] recover noisy ultrametric ma-
trices while in Chapter 3, we use a similar idea to find hierarchical clustering from interactively
sampled similarities. All of these results can be viewed as matrix completion or approximation,
but impose significantly more structure on the target matrix than we do here. For this reason,
many of these algorithmic ideas also do not appear to be useful in our setting.
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Algorithm 1 Interactive Matrix Completion (X 2 Rd⇥n,m)

1. Let ˜U = ;.
2. Randomly draw entries ⌦ ⇢ [d] of size m uniformly with replacement.
3. For each column x

t

of X (t 2 [N ]):
(a) If ||x

t⌦

� P
˜

U

⌦

x
t⌦

||2
2

> 0:

i. Fully observe x
t

and add to ˜U (orthogonalize ˜U ).
ii. Randomly draw a new set ⌦ of size m uniformly with replacement.

(b) Otherwise x̂
t

 ˜U(

˜UT

⌦

˜U
⌦

)

�1

˜U
⌦

x
t⌦

.
4. Return ˆX with columns x̂

t

.

2.2 Matrix and Tensor Completion

In this section we develop the main theoretical guarantees on the exact low-rank completion
problems. We first develop our interactive algorithm for matrices and tensors and state their
main performance guarantee. We then turn to several necessary conditions for these problems.

Our procedure for the matrix case, whose pseudocode is displayed in Algorithm 1, streams the
columns of the matrix X into memory and iteratively adds directions to an estimate for the
column space of X . The algorithm maintains a subspace U and, when processing the tth column
x
t

, estimates the norm of P
U

?x
t

using only a few entries of x
t

. We will ensure that, with high
probability, this estimate will be non-zero if and only if x

t

contains a new direction. If the
estimate is non-zero, the algorithm asks for the remaining entries of x

t

and adds the new direction
to the subspace U . Otherwise, x

t

lies in U and we will see that the algorithm already has sufficient
information to complete the column x

t

.

Therefore, the key ingredient of the algorithm is the estimator for the projection onto the or-
thogonal complement of the subspace U . This quantity is estimated as follows. Using a list of
m locations ⌦ sampled uniformly with replacement from [d], we down-sample both x

t

and an
orthonormal basis U to x

t⌦

and U
⌦

. We then use kx
t⌦

� P
U

⌦

x
t⌦

k2 as our estimate. It is easy to
see that this estimator leads to a test with one-sided error, since the estimator is exactly zero if
x
t

2 U . In our analysis, we establish a relative-error deviation bound, which allows us to apply
this test in our algorithm.

A subtle but critical aspect of the algorithm is the choice of ⌦. The list ⌦ always has m elements,
and each element is sampled uniformly with replacement from [d]. More importantly, we only
resample ⌦ when we add a direction to U . This ensures that the algorithm does not employ too
much randomness, which would lead to an undesirable logarithmic dependence on n.

For tensors, the algorithm becomes recursive in nature. At the outer level of the recursion, the
algorithm maintains a candidate subspace U for the mode T subtensors X(T )

i

. For each of these
subtensors, we test whether X(T )

i

lives in U and recursively complete that subtensor if it does
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Algorithm 2 Interactive Tensor Completion (X, {m
t

}T�1

t=1

)

1. If X is just a vector, sample X entirely and return it.
2. Let U = ;.
3. Randomly draw entries ⌦ ⇢Q

T�1

t=1

[n
t

] uniformly with replacement w. p. m
T�1

/
Q

T�1

t=1

n
t

.

4. For each mode-T subtensor X(T )

i

of X, i 2 [n
T

]:

(a) If ||X(T )

i⌦

� PU
⌦

X(t)

i⌦

||2
2

> 0:

i. ˆX(T )

i

 recurse on (X(T )

i

, {m
t

}T�1

t=1

)

ii. U
i

 PU? ˆX(T )

i

||PU? ˆX(T )

i || . U  U [ U
i

.

(b) Otherwise ˆX(T )

i

 U(UT

⌦

U
⌦

)

�1U
⌦

X(T )

i⌦

5. Return ˆX with mode-T subtensors ˆX
i

(T )

.

not. Once we complete the subtensor, we add it to U and proceed at the outer level. When the
subtensor itself is just a column, we observe the columns in its entirety.

Turning to the performance guarantees for these algorithms, we first bound the probability of
error for the tensor completion algorithm (Algorithm 2). The guarantee for Algorithm 1 is just a
specialization of this result to the order-two case. The following result is based on an analysis of
the test statistic and the reconstruction procedure in Algorithm 2. See Section 2.4 for the proof.
Theorem 2.1. Let X =

P
r

i=1

⌦T

t=1

a(t)
j

be a rank r order-T tensor with subspaces A(t)

=

span({a(t)
j

}r
j=1

). Suppose that all of A(1), . . . A(T�1) have coherence bounded above by µ
0

. For
any � 2 (0, 1), Algorithm 2 has R

01

(

ˆX)  � provided that we set:

m
t

� 32Trtµt

0

log

2

(10rT/�). (2.4)

With this choice, the total number of samples used is:

32(

TX

t=1

n
t

)rT�1µT�1

0

T log(10rT/�). (2.5)

The running time of the algorithm is:

˜O

 
r2
 

T�1Y

t=1

n
t

!
+ rT

TX

t=1

n
t

+ Tr2+T

!
, (2.6)

when we treat µ
0

as a constant and ignore logarithmic factors.

In the special case of a n ⇥ . . . ⇥ n tensor of order T , the algorithm succeeds with probability
at least 1 � � using ⌦(nrT�1/2µT�1

0

T 2

log(Tr/�)) samples, exhibiting a linear dependence on
the tensor dimensions. In comparison, all guarantees for tensor completion we are aware of
have super-linear dependence on the tensor dimension n [132, 173]. To our knowledge, the best
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known sample complexity is O(r1/2n3/2

) for exact recovery of a n ⇥ n ⇥ n third-order tensor
of rank r [173]. An alternating minimization procedure is known to achieve O(r5n3/2

) sample
complexity for this problem [111].

In the noiseless scenario, one can unfold the tensor into a n
1

⇥Q
T

t=2

n
t

matrix and apply any
matrix completion algorithm. Unfortunately, without exploiting the additional tensor structure,
this approach will scale with

Q
T

t=2

n
t

, which is similarly much worse than our guarantee. Note
that the naı̈ve procedure that does not perform the recursive step has sample complexity scaling
with the product of the dimensions and is therefore much worse than the our algorithm.

The most obvious specialization of Theorem 2.1 is to the matrix completion problem. Pseu-
docode for this algorithm is provided in Algorithm 1
Corollary 2.2. Let X 2 Rd⇥n have rank r and column space U with coherence µ(U)  µ

0

.
Then for any � 2 (0, 1), the output of Algorithm 2 has risk R

01

(

ˆX)  � provided that:

m � 32rµ
0

log

2

(10r2/�). (2.7)

The sample complexity is dr + nm and the running time is O(nmr + r3m+ dr2).

To the best of our knowledge, this result provides the strongest guarantee for the matrix comple-
tion problem. The vast majority of results require both incoherent row and column spaces and
are therefore considerably more restrictive than ours [42, 43, 50, 97, 144]. For example, Recht
shows that by solving the nuclear norm minimization program, one can recover X exactly, pro-
vided that the number of measurements exceeds 32(d + n)rmax{µ0

0

, µ2

1

} log2(n) where recall
that µ0

0

upper bounds the coherence of both the row an d column space, and µ
1

provides another
incoherence-type assumption (which can be removed [50]). Our result improves on his not only
in relaxing the row space incoherence assumption, but also in terms of sample complexity, as we
remove the logarithmic dependence on problem dimension.

As another example, Gittens [95] showed that Nystrom method can recover a rank r matrix
from randomly sampling O(r log r) columns. While his result matches ours in terms of sample
complexity, he analyzes positive-semidefinite matrices with incoherent principal subspace, which
translates to assuming that both row and column spaces are incoherent. Again, in relaxing this
assumption, our result is substantially more general.

We mention that the two-phase algorithm of Chen et al. [52] based on local coherence sampling
allows for coherent row spaces. Their algorithm requires O((n+d)rµ

0

log(n)) samples which is
weaker than our guarantee in that it has a slightly super-linear dependence on problem dimension.
An interesting consequence of Corollary 2.2 is that the amortized number of samples per column
is completely independent of the problem dimension.

Regarding computational considerations, the algorithm operates in one pass over the columns,
and need only store the matrix in condensed form, which requires O((n+d)r) space. Specifically,
the algorithm maintains a (partial) basis for column space and the coefficients for representing
each column by that basis, which leads to an optimally condensed representation. Moreover,
the computational complexity of the algorithm is linear in the matrix dimensions d, n with mild
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polynomial dependence on the rank r. For this run-time analysis, we work in a computational
model where accessing any entry of the matrix is a constant-time operation, which allows us to
circumvent the ⌦(dn) time it would otherwise take to read the input. In comparison, the two stan-
dard algorithms for matrix completion, the iterative Singular Value Thresholding Algorithm [40]
and alternating least-squares [106, 112], are significantly slower than Algorithm 2, not only due
to their iterative nature, but also in per-iteration running time.

2.2.1 Necessary conditions for non-interactive sampling

In this section we prove a number of lower bounds for matrix and tensor completion for non-
interactive sampling procedures. Note that a parameter counting argument shows that interactive
sampling requires ⌦(r

P
n

t=1

n
t

) samples. Each entry of a rank r tensor can be expressed as a
polynomial of the vectors in the canonical decomposition, so the observations lead to a polyno-
mial system in r

P
T

t=1

n
t

variables. If M < r
P

T

t=1

n
t

� T
�
r

2

�
(there are T

�
r

2

�
orthonormality

constraints), then this system is underdetermined, and since it has one solution, it must have
infinitely many, so that recovery is impossible. Our algorithm matches this lower bound in its
dependence on the tensor dimensions, but is polynomially worse in terms of the rank r. How-
ever for the matrix case, Corollary 2.2 shows that our matrix completion algorithm is nearly
optimal, disagreeing only in its dependence on the column incoherence parameter and logarith-
mic factors. In this section we will show that non-interactive sampling has much more stringent
necessary conditions.

Our first result is a necessary condition against non-interactive sampling for the matrix comple-
tion problem when the row space is highly coherent. We show that if the matrix has coherent
row space, then any non-interactive scheme followed by any recovery procedure requires ⌦(dn)
samples to recover a d⇥ n matrix X .

To formalize our lower bound we fix a sampling budget M and consider an estimator to be a
sampling distribution q over {(i, j)|i 2 [d], j 2 [n]}M and a (possibly randomized) function
f : {(⌦, X

⌦

)}! Rd⇥n that maps a set of indices and values to a d⇥n matrix. Let Q(M) denote
the set of all such sampling distributions and let F denote the set of all such estimators. Lastly
let X (d, n, r, µ

0

) denote the set of all d⇥n rank r matrices with column incoherence at most µ
0

.
We consider the minimax probability of error:

R?

(d, n, r, µ
0

,M) = inf

f2F
inf

q2Q(M)

sup

X2X (d,n,r,µ

0

)

P
⌦⇠q

[f(⌦, X
⌦

6= X]

where the probability also accounts for potential randomness in the estimator f . Note that
since we make no assumptions about the distribution q other than excluding interactive distribu-
tions, this setup subsumes essentially all non-interactive sampling strategies including uniform-
at-random, deterministic, and distributions sampling entire columns. The one exception is the
Bernoulli sampling model, where each entry (i, j) is observed with probability q

ij

independently
of all other entries, although we believe a similar lower bound holds there.
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The following theorem lower bounds success probability of any non-interactive strategy and
consequently gives a necessary condition on the sample complexity.
Theorem 2.3. The minimax risk R? satisfies:

R?

(d, n, r, µ
0

,M) � 1

2

�
&

M

(1� r�1

rµ

0

)d

'
1

2(n� r)
, (2.8)

which approaches 1/2 whenever:

M = o

✓
(dn� dr)(1 +

1

rµ
0

� 1

µ
0

)

◆
. (2.9)

As a concrete instantiation of the theorem, if µ
0

is bounded from below by any constant c > 1

(which is possible whenever r  d/c), then the bound approaches 1/2 whenever M = o(d(n �
r)). Thus all non-interactive algorithms must have sample complexity that is quadratic in the
problem dimension. In contrast, Corollary 2.2 ensures that Algorithm 2 has nearly linear sample
complexity, which is a significant improvement over non-interactive algorithms.

The literature contains several other necessary conditions on the sample complexity for matrix
completion. A simple argument shows that without any form of incoherence, one requires ⌦(dn)
samples to recover even a rank one matrix that is non-zero in just one entry. This argument
also applies to interactive sampling strategies and shows that some measure of incoherence is
necessary. With both row and column incoherence, but under uniform sampling, Candes and
Tao [43] prove that ⌦(µ0

0

nr log(n)) observations are necessary to recover a n⇥ n matrix.

One can relax the incoherence assumption by non-uniform non-interactive sampling, although
the sampling distribution is matrix-specific as it depends on the local coherence structure [52].
Unfortunately, one cannot compute the appropriate sampling distribution, before taking any mea-
surements. Our result shows that in the absence of row-space incoherence, there is no universal
non-interactive sampling scheme that can achieve a non-trivial sample complexity. Thus interac-
tivity is necessary to relax the incoherence assumption in completion problems.

Turning to necessary conditions for tensor completion, we adapt the proof of Candes and Tao [43]
to this setting and establish the following lower bound for uniform sampling:
Theorem 2.4. Fix 1  m, r  min

t

n
t

and µ
0

> 1. Fix 0 < � < 1/2 and suppose that we do not
have the condition:

� log

 
1� m

Q
T

i=1

n
i

!
� µT�1

0

rT�1

Q
T

i=2

n
i

log

⇣n
1

2�

⌘
(2.10)

Then there exist infinitely many pairs of distinct n
1

⇥ . . . ⇥ n
T

order-T tensors X 6= X0 of rank
r with coherence parameter  µ

0

such that P
⌦

(X) = P
⌦

(X0
) with probability at least �. Each

entry is observed independently with probability p =

mQT
i=1

ni
.

Theorem 2.4 implies that as long as the right hand side of Equation 2.10 is at most ✏ < 1, and:

m  n
1

rT�1µT�1

0

log

⇣n
1

2�

⌘
(1� ✏/2) (2.11)
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Algorithm 3 Low Rank Approximation (X,m
1

,m
2

)

1. Pass 1: For each column, observe ⌦

t

of size m
1

uniformly at random with replacement
and estimate ĉ

t

=

d

m

1

||x
t,⌦t ||2

2

. Estimate ˆf =

P
t

ĉ
t

.

2. Pass 2: Set ˜X = 0 2 Rd⇥n.
(a) For each column x

t

, sample m
2,t

= m
2

nĉ
2

/ ˆf observations ⌦
2,t

uniformly at random
with replacement.

(b) Update ˜X =

˜X + (R
⌦

2,txt

)eT
t

.

3. Compute the SVD of ˜X and output ˆX which is formed by the top-r ranks of ˜X .

then with probability at least � there are infinitely many matrices that agree on the observed
entries. The expected number of samples observed is m This gives a necessary condition on
the number of samples required for tensor completion. Comparing with Theorem 2.1 shows
that our procedure outperforms any non-interactive procedure in its dependence on the tensor
dimensions, as our bound do not include a log(n) factor. Note that our guarantee matches the
polynomial terms in this lower bound in its dependence on n, r, µ

0

, although the dependence on
the tensor order T is better here.

2.3 Matrix Approximation

For the matrix approximation problem, we propose an interactive sampling algorithm to obtain
a low-rank approximation to X . The algorithm (see Algorithm 3 for pseudocode) makes two
passes through the columns of the matrix. In the first pass, it subsamples each column uniformly
at random and estimates each column norm and the matrix Frobenius norm. In the second pass,
the algorithm samples additional observations from each column, and for each t, places the
rescaled zero-filled vector R

⌦

2,txt

into the tth column of a new matrix ˜X , which is a preliminary
estimate of the input, X . Once the initial estimate ˜X is computed, the algorithm zeros out all but
the top r ranks of ˜X to form ˆX . We will show that ˆX has low excess risk, when compared with
the best rank-r approximation, X

r

.

A crucial feature of the second pass is that the number of samples per column is proportional to
the squared norm of that column. Of course this sampling strategy is only possible if the column
norms are known, motivating the first pass of the algorithm, where we estimate precisely this
sampling distribution. This feature allows the algorithm to tolerate highly non-uniform column
norms, as it focuses measurements on high-energy columns, and leads to significantly better
approximation. This idea has been used before, although only in the exactly low-rank case [52].

For the main performance guarantee, we only assume that the matrix has incoherent columns,
that is dkx

t

k21/kx
t

k2
2

 µ for each column x
t

. In particular we make no additional assumptions
about the high-rank structure of the matrix. We have the following theorem:
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Theorem 2.5. Set m
1

� 32µ log(n/�) and assume n � d and that X has µ-incoherent columns.
With probability � 1� 2�, Algorithm 3 computes an approximation ˆX such that:

kX � ˆXk
F

 kX �X
r

k
F

+ kXk
F

 
6

r
rµ

m
2

log

✓
d+ n

�

◆
+

✓
6

r
rµ

m
2

log

✓
d+ n

�

◆◆
1/2

!

using n(m
1

+m
2

) samples. In other words, the output ˆX satisfies kX � ˆXk
F

 kX �X
r

k
F

+

✏kXk
F

with probability � 1� 2� and with sample complexity:

32nµ log(n/�) +
576

✏4
nrµ log

2

✓
d+ n

�

◆
. (2.12)

The proof is deferred to Section 2.4. The theorem shows that the matrix ˆX serves as nearly as
good an approximation to X as X

r

. Specifically, with O(nrµ log

2

(d+n)) observations, one can
compute a suitable approximation to X . The running time of the algorithm is dominated by the
cost of computing the truncated SVD, which is at most O(d2n).

While the dependence between the number of samples and the problem parameters n, r, and
µ is quite mild and matches existing matrix completion results, the dependence on the error ✏
in Equation 2.12 seems undesirable. This dependence arises from our translation of a bound on
k ˜X�Xk

2

into a bound on k ˆX�Xk
F

, which results in the m�1/4

2

-dependence in the error bound.
We are not aware of better results in the general setting, but a number of tighter translations are
possible under various assumptions. We mention just two such results here.
Proposition 2.6. Under the same assumptions as Theorem 2.5, suppose further that X has rank
at most r. Then with probability � 1� 2�:

kX � ˆXk
F

 20kXk
F

r
rµ

m
2

log

✓
d+ n

�

◆

This proposition tempers the dependence on the error ✏ from 1/✏4 to 1/✏2 in the event that the
input matrix has rank at most r. This gives a relative error guarantee for Algorithm 3 on the
matrix completion problem, which improves on the one implied by Theorem 2.5. Note that this
guarantee is weaker than Corollary 2.2, but Algorithm 3 is much more robust to relaxations of
the low rank assumption as demonstrated in Theorem 2.5.

A similarly mild dependence on ✏ can be derived under the assumption that X = A + R, A
has rank r and R is some perturbation, which has the flavor of existing noisy matrix completion
results. Here, it is natural to recover the parameter A rather than the top r ranks of X and we
have the following parameter recovery guarantee for Algorithm 3:
Proposition 2.7. Let X = A + R where A has rank at most r. Suppose further that X has
µ-incoherent columns and set m

1

� 32µ log(n/�). Then with probability � 1� 2�:

k ˆX � Ak
F

 20

r
rµ

m
2

log

✓
d+ n

�

◆
(kAk

F

+ kR
⌦

k
F

) +

p
8rkRk

2

(2.13)

where the number of samples is n(m
1

+ m
2

) and ⌦ is the set of all entries observed over the
course of the algorithm.
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To interpret this bound, let kAk
F

= 1, and let R be a random matrix whose entries are indepen-
dently drawn from a Gaussian distribution with variance �2/(dn). Note that this normalization
for the variance is appropriate in the high-dimensional setting where n, d ! 1, since we keep
the signal-to-noise ratio kAk2

F

/kRk2
F

= 1/�2 constant. The last term can be ignored, since by
the standard bound on the spectral norm of a Gaussian matrix, kRk

2

= O(�
q

1

d

log((n+ d)/�))

which will be lower order [1]. We can also bound kR
⌦

k
F

 O(�
q

m

1

+m

2

d

log((n+d)/�)) using
a Gaussian tail bound. With m

1

 m
2

we arrive at:

k ˆX � Ak
F

 c
?

✓r
rµ

m
2

+ �

r
rµ

d

◆
log

2

✓
d+ n

�

◆
,

where c
?

is some positive constant. In the high dimensional setting, when rµ = õ(d), this shows
that Algorithm 3 consistently recovers A as long as m

2

= !̃(rµ). This second condition implies
that the total number of samples uses is !̃(nrµ).

2.3.1 Comparison with related results

The closest result to Theorem 2.5 is the result of Koltchinskii et al. [119] who consider a soft-
thresholding procedure and bound the approximation error in squared-Frobenius norm. They
assume that the matrix has bounded entry-wise `1 norm and give an entry-wise squared-error
guarantee of the form:

k ˆX �Xk2
F

 kX �X
r

k2
F

+ cdnkXk21
nr log(d+ n)

M
(2.14)

where M is the total number of samples and c is a constant. Their bound is quite similar to
ours in the relationship between the number of samples and the target rank r. However, since
dnkXk21 � kXk2F , their bound is significantly worse in the event that the energy of the matrix
is concentrated on a few columns.

To make this concrete, fix kXk
F

= 1 and let us compare the matrix where every entry is 1p
dn

with the matrix where one column has all entries equal to 1p
d

. In the former, the error term in
the squared-Frobenius error bound of Koltchinskii et al. is nr log(d+ n)/M while our bound on
Frobenius error is, modulo logarithmic factors, the square root of this quantity. In this example,
the two results are essentially equivalent. For the second matrix, their bound deteriorates signifi-
cantly to n2r log(d+n)/M while our bound remains the same. Thus our algorithm is particularly
suited to handle matrices with non-uniform column norms.

Apart from interactive sampling, the difference between our procedure and the algorithm of
Koltchinskii et al. [119] is a matter of soft- versus hard-thresholding of the singular values of the
zero-filled matrix. In the setting of Proposition 2.7, soft thresholding seems more appropriate, as
the choice of regularization parameter allows one to trade off the amount of signal and noise cap-
tured in ˆX . While in practice one could replace the hard thresholding step with soft thresholding
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in our algorithm, there are some caveats with the theoretical analysis. First, soft-thresholding
does not ensure that ˆX will be at most rank r, so it is not suitable for the matrix approxima-
tion problem. Second, the resulting error guarantee depends on the sampling distribution, which
cannot be translated to the Frobenius norm unless the distribution is quite uniform [119, 134].
Thus the soft-thresholding procedure does not give a Frobenius-norm error guarantee in the non-
uniform setting that we are most interested in.

The majority of other results on low rank matrix completion focus on parameter recovery rather
than approximation [41, 117, 134]. It is therefore best to compare with Proposition 2.7, where
we show that Algorithm 3 consistently recovers the parameter, A. These results exhibit similar
dependence between the number of samples and the problem parameters n, r, ✏ but hold under
different notions of uniformity, such as spikiness, boundedness, or incoherence. Our result agrees
with these existing results but holds under a much weaker notion of uniformity.

Lastly, we emphasize the effect of interactive sampling in our bound. We do not need any
uniformity assumption over the columns of the input matrix X . All existing works on noisy low
rank matrix completion or matrix approximation from missing data have some assumption of
this form, be it incoherence [41, 117], spikiness [134], or bounded `1 norm [119]. The detailed
comparison with the result of Koltchinskii et al. gives a precise characterization of this effect
and shows that in the absence of such uniformity, our interactive sampling algorithm enjoys a
significantly lower sample complexity.

In the event of uniformity, our algorithm performs similarly to existing ones. Specifically, we
obtain the same relationship between the number of samples M , the dimensions n, d and the
target rank r. If we knew a priori that the matrix had uniform column lengths, we could omit the
first pass of the algorithm, sample uniformly in the second pass and avoid interactivity.

2.4 Proofs

In this section we provide detailed proofs of the results in this section. Some well known large-
deviation inequalities, that are used throughout this thesis, are stated in the appendix.

2.4.1 Proof of Theorem 2.1 and Corollary 2.2

Before turning to the proofs of Theorem 2.1 and Corollary 2.2, we prove several results involving
incoherence and the concentration of orthogonal projections under random subsampling.

Intermediary Results for Theorem 2.1 and Corollary 2.2

This first intermediary result shows that the test statistic used in Algorithm 2 concentrates sharply
around its mean. Specifically, this theorem analyzes the test based on the projection kx

⌦

�
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P
U

⌦

x
⌦

k2
2

. The proof of this theorem uses various versions of Bernstein’s inequality, and im-
proves on the result of Balzano et al. [25]. It is the key ingredient to the analysis of these
algorithms.
Theorem 2.8. Let U be an r-dimensional subspace of Rd and y = x + v where x 2 U and
v 2 U?. Fix � > 0 and m � max{8

3

rµ(U) log(2r/�), 4µ(v) log(1/�)} and let ⌦ be an index set
of m entries sampled uniformly with replacement from [d]. With probability � 1� 4�:

m(1� ↵)� rµ(U)

�

1��

d
kvk2

2

 ky
⌦

� P
U

⌦

y
⌦

k2
2

 (1 + ↵)
m

d
kvk2

2

(2.15)

where ↵ =

q
2

µ(v)

m

log(1/�)+ 2µ(v)

3m

log(1/�), � = (1+2 log(1/�))2, and � =

q
8rµ(U)

3m

log(2r/�).

This result showcases much stronger concentration of measure than the result of Balzano et
al. [25]. The main difference is in the definitions of ↵ and �, which in their work have worse
dependence on the coherence parameter µ(v). These improvements play out into our stronger
sample complexity guarantee for the matrix and tensor completion algorithms.

The proof of this theorem is based on three deviation bounds controlling the effect of subsam-
pling. We state and prove these lemmas before turning to the proof of Theorem 2.8.
Lemma 2.9. With the same notations as in Theorem 2.8, with probability � 1� 2�:

(1� ↵)m
d
kvk2

2

 kv
⌦

k2
2

 (1 + ↵)
m

d
kvk2

2

(2.16)

Proof. The proof is an application of Bernstein’s inequality (Theorem A.1). Let ⌦(i) denote the
ith coordinate in the sample and let X

i

= v2
⌦(i)

� 1

d

kvk2
2

so that
P

m

i=1

X
i

= kv
⌦

k2
2

� m

d

kvk2
2

. The
variance and absolute bounds are:

�2

=

mX

i=1

EX2

i

 m

n

nX

i=1

v4
i

 m

n
kvk21kvk22, R = max kX

i

k  kvk21.

Bernstein’s Inequality then shows that:

P
 �����

mX

i=1

X
i

����� � t

!
 2 exp

✓ �t2
2kvk21(

m

d

kvk2
2

+

1

3

t

◆
.

Setting t = ↵m

d

kvk2
2

and using the definition µ(v) = dkvk21/kvk2
2

this bound becomes:

P
 �����

mX

i=1

X
i

����� � ↵
m

d
kvk2

2

!
 2 exp

✓ �↵2

2µ(v)(1 + ↵/3)

◆

And plugging in the definition of ↵ ensures that the probability is upper bounded by 2�. B
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Lemma 2.10. With the same notation as Theorem 2.8 and provided that m � 4µ(v) log(1/�),
with probability at least 1� �:

kUT

⌦

v
⌦

k2
2

 �
m

d

rµ(U)

d
kvk2

2

(2.17)

Proof. The proof is an application of the vector version of Bernstein’s inequality (Proposi-
tion A.2. Let u

i

2 Rr denote the ith row of an orthonormal basis for U and set X
i

= u
⌦(i)

v
⌦(i)

.
Since v 2 U?, the X

i

s are centered so we are left to compute the variance:

mX

i=1

EkX
i

k2 = m

d

dX

j=1

ku
j

v
j

k2  m

d

rµ(U)

d
kvk2

2

= V

Applying Proposition A.2 and re-arranging, we have that with probability at least 1� �:

kUT

⌦

v
⌦

k
2


p
V +

p
4V log(1/�) =

r
m

d

rµ

d
kvk
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⇣
1 + 2

p
log(1/�)

⌘

As long as:
t =

p
4V log(1/�)  V (max

i

kX
i

k)�1

Since max

i

kX
i

k  kvk1
p

rµ/d and using the incoherence assumption on v this condition

translates to m � 4µ(v) log(1/�). Squaring the above inequality proves the lemma. B
Lemma 2.11 ([25]). Let � > 0 and m � 8

3

rµ(U) log(2r/�). Then

k(UT

⌦

U
⌦

)

�1k
2

 d

(1� �)m (2.18)

with probability at least 1� � provided that � < 1. In particular UT

⌦

U
⌦

is invertible.

Proof of Theorem 2.8. We begin with the decomposition:
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⌦

� P
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⌦
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2

� vT
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U
⌦
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. (2.19)

Next, let W T

⌦

W
⌦

= (UT

⌦

U
⌦

)

�1, which is valid provided that UT

⌦

U
⌦

is invertible (which we will
subsequently ensure). We have:
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⌦
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which means that:
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⌦
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. (2.20)

The theorem now follows immediately from Lemmas 2.9, 2.10, and 2.11, which control the

quantities in the above inequalities. B
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Another significant component of the proof involves controlling the incoherence of various sub-
spaces that appear throughout the execution of the algorithm. The following lemmas control
precisely these quantities.
Lemma 2.12. Let U

1

⇢ Rn

1 , U
2

⇢ Rn

2 , . . . U
T

⇢ RnT be subspaces of dimension at most d, let
W

1

⇢ U
1

have dimension d0. Define S = span({⌦T
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u(t)

i

}d
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). Then:
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Q
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µ(U
i
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Proof. For the first property, since W
1

is a subspace of U
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, P
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e
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1

P
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e
j

so ||P
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2

. The result now follows from the definition of incoherence.

For the second property, we instead compute the incoherence of:
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u

(t)2Ut8t

⌘

which clearly contains S. Note that if {u(t)

i

} is an orthonormal basis for U
t

(for each t), then the
outer product of all combinations of these vectors is a basis for S0. We now compute:
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Now, property (a) establishes that µ(S)  r

T

r

µ(S0
) which is the desired result. B

Theorem 2.8, Lemma 2.12, and some algebraic manipulations, yields the following corollary,
which we use in the analysis of the Algorithm 2:
Corollary 2.13. Suppose that ˜U is a subspace of U and x

t

2 U but x
t

/2 ˜U . Observe a set
of coordinates ⌦ ⇢ [d] of m entries sampled uniformly at random with replacement. If m �
32rµ

0

log
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(2r/�) then with probability � 1 � 4�, kx
t⌦

� P
˜

U

⌦

x
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> 0. If x
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2 ˜U , then
conditioned on the fact that UT
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U
⌦

is invertible, kx
t⌦

� P
˜
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k
2

= 0 with probability 1.
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Proof. The second statement follows from the fact that if x
t

2 ˜U , then x
t⌦

2 ˜U
⌦

, so the pro-
jection onto the orthogonal complement is identically zero. As for the first statement, we apply
Theorem 2.8, noting that the conditions on m are satisfied.

We now verify that the lower bound is strictly positive. By Lemma 2.12(a), we know that any
vector v in U has coherence µ(v)  rµ

0

and similarly any subspace ˜U ⇢ U has dim(

˜U)µ( ˜U) 
rµ

0

. Plugging in m into the definition ↵, �, and using the previous facts, we see that ↵ < 1/2
and � < 1/3. We are left with:

kx
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� P
˜
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⌦

x
t⌦

k2
2

� 1

d

✓
m

2

� 3rµ�

2

◆

and the lower bound is strictly positive whenever 3rµ�  m. Plugging in the definition of �, we

see that this relation is also satisfied, concluding the proof. B

Proof of Corollary 2.2

Corollary 2.2 is considerably simpler to prove than Theorem 2.1, so we prove the former in its
entirety before proceeding to the latter. First notice that our estimates ˜U for the column space is
always a subspace of the true column space, since we only ever add in fully observed vectors that
live in the column space. Also notice that we only resample the set ⌦ at most r + 1 times, since
the matrix is exactly rank r, and we only resample when we find a linearly independent column.
Thus with probability 1� (r + 1)�, by application of Lemma 2.11 from the appendix, all of the
matrices ˜UT

⌦

˜U
⌦

are invertible.

When processing the tth column, one of two things can happen. Either x
t

lives in our current
estimate for the column space, in which case we know from the above corollary that with prob-
ability 1, kx

t⌦

� P
U

⌦

x
t⌦

k2 = 0. This holds since we have already accounted for the probability
that UT

⌦

U
⌦

is not-invertible. When this happens we do not obtain additional samples and just
need to ensure that we reconstruct x

t

, which we will see below. If x
t

does not live in U , then
with probability � 1 � 4� the estimated projection is strictly positive (by Corollary 2.13), in
which case we fully observe the new direction x

t

and augment our subspace estimate. In fact,
this failure probability includes the event that UT

⌦

U
⌦

is not invertible.

Since X has rank at most r, this latter case can happen no more than r times, and via a union
bound, the failure probability is  4r� + �. Here, the last factor of � ensures that the last
subsampled projection operator is well behaved. In other words, with probability � 1� 4r�� �,
our estimate U at the end of the algorithm is exactly the column space of X .

The vectors that were not fully observed are recovered exactly as long as (UT

⌦

U
⌦

)

�1 is invertible.
This follows from the fact that, if x

t

2 U , we can write x
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= U↵
t

and we have:
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⌦

U
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)

�1UT
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= U↵
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= x
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We already accounted for the probability that these matrices are invertible. We showed above
that the total failure probability is at most 5r� when m � 32rµ

0

log

2

(2r/�), so by setting m �
32rµ

0

log

2

(10r2/�), the total failure probability is at most �.

For the running time, per column, the dominating computational costs involve the projection P
˜

U

⌦

and the reconstruction procedure. The projection involves several matrix multiplications and the
inversion of a r⇥r matrix, which need not be recomputed on every iteration. Ignoring the matrix
inversion, this procedure takes at most O(mr) time per column, since the vector and the projector
are subsampled to m-dimensions, for a total running time of O(nmr). At most r times, we must
recompute (UT

⌦

U
⌦

)

�1, which takes O(r2m), contributing a factor of O(r3m) to the total running
time. Finally, we run the Gram-Schmidt process once over the course of the algorithm, which

takes O(dr2) time. B

Proof of Theorem 2.1

We now generalize the above proof to the tensor completion case and prove Theorem 2.1. We
first focus on the recovery of the tensor in total, expressing this in terms of failure probabilities in
the recursion. Then we inductively bound the failure probability of the entire algorithm. Finally,
we compute the total number of observations. For now, define ⌧

T

to be the failure probability of
recovering a T -order tensor.

By Lemma 2.12, the subspace spanned by the mode-T tensors has incoherence at most rT�2µT�1

0

and rank at most r and each slice has incoherence at most rT�1µT�1

0

. The subspace spanned by
the mode-T sub-tensors is based on the outer product of the subspaces {A(i)}T�1

i=1

so it is based on
the outer product of T � 1 subspaces, all with coherence bounded by µ

0

and dimension at most
r. This means that the subspace spanned by the mode-T subtensors has incoherence rT�2µT�1

0

and each slice is a 1-dimensional subspace of this r-dimensional subspace, so it has incoherence
that is a factor of r larger.

By the same argument as Corollary 2.13, we see that with m
T�1

� 32rT�1µT�1

0

log

2

(2r/�
T�1

)

the projection test succeeds in identifying informative subtensors (those not in our current basis)
with probability� 1�4�

T�1

. With a union bound over these r subtensors, the failure probability
becomes ⌧

T

 4r�
T�1

+ �
T�1

, not counting the probability that we fail in recovering these
subtensors, which is r⌧

T�1

.

For each order T � 1 tensor that we have to recover, the subspace of interest has incoherence
at most rT�3µT�2 and with probability � 1 � 4r�

T�2

we correctly identify each informative
subtensor as long as m

T�2

� 32rT�2µT�2

log

2

(2r/�
T�2

). Again the failure probability is at
most ⌧

T�1

 4r�
T�2

+ �
T�2

+ r⌧
T�2

.

To compute the total failure probability we proceed inductively. ⌧
1

= 0 since we completely
observe any one-mode tensor (vector). The recurrence relation is:

⌧
t

= 4r�
t�1

+ �
t�1

+ r⌧
t�1

. (2.21)
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Which in words means that we complete r subtensors of order T � 1, r2 tensors of order T � 2

and so on, observing rT�1 order 1 tensors (or vectors) in full. The total failure probability is
therefore bounded by:

⌧
T

=

T�1X

t=1

5rT�t�
t

. (2.22)

The requirement on m
t

is:

m
t

� 32rtµt

0

log

2

(2rt/�
t

).

To achieve risk at most �, one can set m
t

� 32Trtµt

0

log

2

(10rT/�), which concludes the proof
of the statistical guarantee for Algorithm 2.

We also compute the sample complexity inductively. Let ⌘
T

denote the number of samples
needed to complete an order T tensor. Then ⌘

1

= n
1

and:

⌘
t

= n
t

m
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So that ⌘
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is upper bounded as:
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when we set m
t

as above.

The running time is computed in a similar way to the matrix case. To complete an order T
tensor, we must complete r order T � 1 tensors, and additional process each subtensor. As in the
matrix case, processing all of the n

T

subtensors requires m
T�1

r time per column to do all vector
and matrix multiplications, O(r3m

T�1

) time to do the matrix inversions, and O(r2
Q

T�1

t=1

n
t

) to
perform Gram-Schmidt. If the running time to complete a order t tensors is denote 

t

, then the
running time is inductively defined as:
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n
t

m
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n
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!
, (2.23)

with 
1

= n
1

. Using the fact that m
t

=

˜O(rt) and that r  min

t

{n
t

}, the total running time can
be bounded by:

˜O
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!

where we are treating µ
0

as a constant and ignoring logarithmic factors. B
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2.4.2 Proof of Theorem 2.3

The proof of the necessary condition in Theorem 2.3 is based on a standard reduction-to-testing
style argument. For ease of notation, we suppress the dependence on the parameters to R?,Q,
and X . The high-level architecture is to consider a subset X 0 ⇢ X of inputs and lower bound the
Bayes risk. Specifically, if we fix a prior ⇡ supported on X 0,

R?

= inf

f2F
inf

q2Q
max

X2X
P
⌦⇠q

[f(⌦, X
⌦

) 6= X]

� inf

f2F
inf

q2Q
E

⌦⇠q,X⇠⇡

[P
f

[f(⌦, X
⌦

) 6= X]]

� inf

f2F
min

⌦:|⌦|=M

E
X⇠⇡

[P
f

[f(⌦, X
⌦

) 6= X]]

The first step is a standard one in information theoretic lower bounds and follows from the fact
that the maximum dominates any expectation over the same set. The second step is referred to
as Yao’s Minimax Principle in the analysis of randomized algorithms, which says that one need
only consider deterministic algorithms if the input is randomized. It is easily verified by the fact
that in the second line, the inner expression is linear in q, so it is minimized on the boundary
of the simplex, which is a deterministic choice of ⌦. We use P

f

to emphasize that f can be
randomized, although it will suffice to consider deterministic f .

Let ⇡ be the uniform distribution over X 0 ⇢ X . The minimax risk is lower bounded by:

R? � 1�max

⌦

E
X⇠⇡

|{X 0 2 X 0|X 0
⌦

= X
⌦

}|�1

since if there is more than one matrix in X 0 that agrees with X on ⌦, the best any estimator could
do is guess. Notice that since X is drawn uniformly, this is equivalent to considering an f that
deterministically picks one matrix X 0 2 X 0 that agrees with the observations.

To upper bound the second term, define U
⌦

= {X 2 X 0
: |{X 0 2 X 0|X 0

⌦

= X
⌦

}| = 1} which is
the set of matrices that are uniquely identified by the entries ⌦. Also set N

⌦

= X 0 \U
⌦

, which is
the set of matrices that are not uniquely identified by ⌦. We may write:

max

⌦

E
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|{X 0 2 X 0|X 0
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= X
⌦

}|�1  max

⌦

1

2

+

|U
⌦

|
2|X 0|

Since if X 2 N
⌦

, there are at least two matrices that agree on those observations, so the best
estimator is correct with probability no more than 1/2.

We now turn to constructing a set X 0. Set l = d

rµ

0

. The left singular vectors u
1

, . . . , u
r�1

will be
constant on {1, . . . , l}, {l+1, . . . , 2l} etc. while the first r�1 right singular vectors v

1

, . . . , v
r�1

will be the first r � 1 standard basis elements. We are left with:

d� (r � 1)l = d� r � 1

r

d

µ
0

, dc
1

,

coordinates where we will attempt to hide the last left singular vector. Here we defined c
1

=

1 � r�1

rµ

0

, which is not a constant, but will ease the presentation. For u
r

, we pick l coordinates
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out of the dc
1

remaining, pick a sign for each and let u
r

have constant magnitude on those
coordinates. There are 2

l

�
dc

1

l

�
possible choices for this vector. The last right singular vector is

one of the n� r remaining standard basis vectors. Notice that our choice of l ensures that every
matrix in this family meets the column space incoherence condition.

To upper bound |U
⌦

| notice that since u
r

can have both positive and negative signs, a matrix is
uniquely identified only if all of the entries corresponding to the last singular vector are observed.
Thus observations in the tth column only help to identify matrices whose last rank was hidden in
that column. If we use m

t

observations on the tth column, we uniquely identify 2

l

�
mt

l

�
matrices,

where
�
mt

l

�
= 0 if m

t

< l. In total we have:

|X 0| = (n� r)2l
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◆
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We are free to choose m
i

to maximize |U
⌦

| subject to the constraints m
i

 dc
1

and
P

i

m
i

M ,
the total sensing budget. Optimizing over m

i

is a convex maximization problem with linear con-
straints, and consequently the solution is on the boundary. By symmetry, this means that that best
sampling pattern is to observe columns in their entirety and devote the remaining observations
to one more column. With M observations, we can observe M

c

1

n

columns fully, leading to the
bounds:
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⌦
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,

which, after plugging in for c
1

, leads to the lower bound on the risk. B

2.4.3 Proof of Theorem 2.4

We start by giving a proof in the matrix case, which is a minor correction of the proof by Candes
and Tao [43]. Then we turn to the tensor case, where only small adjustments are needed to
establish the result. We work in the Bernoulli model, noting that Candes’ and Tao’s arguments
demonstrate how to adapt these results to the uniform-at-random sampling model.

Matrix Case

In the matrix case, suppose that l
1

=

n

1

r

and l
2

=

n

2

µ

0

r

are both integers. Define the following
blocks R

1

, . . . R
r

⇢ [n
1

] and C
1

, . . . C
r

⇢ [n
2

] as:

R
i

= {l
1

(i� 1) + 1, l
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(i� 1) + 2, . . . l
1

i}
C

i

= {l
2

(i� 1) + 1, l
2

(i� 1) + 2, . . . l
2

i}
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Now consider the n
1

⇥ n
2

family of matrices defined by:

M = {
rX

k=1

u
k

vT
k

|u
k

= [1,
p
µ
0

]

n � 1
Rk
, v

k

= 1
Ck
}. (2.24)

The � operator is the Hadamard operator, which performs entry-wise multiplication. M is a
family of block-diagonal matrices where the blocks have size l

1

⇥ l
2

. Each block has constant
rows, but each row may take any value in [1,

p
µ
0

]. For any M 2 M, the incoherence of the
column space can be computed as:

µ(U) =

n
1

r
max

j2[n
1

]

||P
U

e
j

||2
2

=

n
1

r
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k2[r]
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]
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e
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)
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(uT
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)
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r
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k2[r]
µ
0

(n
1

/r)
= µ

0

A similar calculation reveals that the row space is also incoherent with parameter µ
0

.

Unique identification of M is not possible unless we observe at least one entry from each row
of each diagonal block. If we did not, then we could vary that corresponding coordinate in the
appropriate u

k

and find infinitely many matrices M 0 2M that agree with our observations, have
rank and incoherence at most r and µ

0

respectively. Thus, the probability of successful recovery
is no larger than the probability of observing one entry of each row of each diagonal block.

The probability that any row of any block is unsampled is ⇡
1

= (1� p)l2 and the probability that
all rows are sampled is (1� ⇡

1

)

n

1 . This must upper bound the success probability 1� �. Thus:

�n
1

⇡
1

� n
1

log(1� ⇡
1

) � log(1� �) � �2�

or ⇡
1

 2�/n
1

as long as � < 1/2. Substituting ⇡
1

= (1� p)l2 we obtain:
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l
2

log

✓
2�

n
1

◆
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◆

as a necessary condition for unique identification of M .

Exponentiating both sides, writing p =

m

n

1

n

2

and the fact that 1� e�x > x� x2/2 gives us:

m � n
1

µ
0

r log
⇣n

1

2�

⌘
(1� ✏/2)

when µ
0

r/n
2

log(

n

1

2�

)  ✏ < 1.

Tensor Case

Fix T , the order of the tensor and suppose that l
1

=

n

1

r

is an integer. Moreover, suppose that
l
t

=

nt
µ

0

r

is an integer for 1 < t  T .
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Define a set of blocks, one for each mode and the family

B(t)

i

= {l
t

(i� 1) + 1, l
t

(i� 1) + 2, . . . , l
t

i} 8i 2 [r], t 2 [T ]

M =

8
<

:

rX

i=1
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t=1

a(t)
i

������

a(1)
i

= [1,
p
µ
0

]

n � 1
B

(t)
i

a(t)
i

= 1
B

(t)
i
, 1 < t  T

9
=

;

This is a family of block-diagonal tensors and just as before, straightforward calculations reveal
that each subspace is incoherent with parameter µ

0

. Again, unique identification is not possible
unless we observe at least one entry from each row of each diagonal block. The difference is that
in the tensor case, there are

Q
i 6=1

l
i

entries per row of each diagonal block so the probability that
any single row is unsampled is ⇡

1

= (1 � p)
Q

i 6=1

li . Again there are n
1

rows and any algorithm
that succeeds with probability 1� � must satisfy:

�n
1

⇡
1

� n
1

log(1� ⇡
1

) � log(1� �) � �2�
Which implies ⇡

1

 2�/n
1

(assuming � < 1/2). Substituting in the definition of ⇡
1

we have:
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l
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The same approximations as before yield the bound (as long as µ

T�1

0

r
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m � n
1

µT�1

0

rT�1

log
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1
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⌘
(1� ✏/2).

B

2.4.4 Proof of Theorem 2.5 and related propositions

To prove the main approximation theorem (Theorem 2.5), we must analyze the three phases of
the algorithm. The analysis of the first phase is fairly straightforward; we show that under the
incoherence assumption, one can compute a reliable estimate of each column norm from a very
small number of measurements per column. For the second phase, we show that by sampling
according to the re-weighted distribution using the column-norm estimates, the matrix ˜X is close
to X in spectral norm. We then translate this spectral norm guarantee into a approximation
guarantee for ˆX =

˜X
r

.

Let us start with this translation. We use a lemma of [1].
Lemma 2.14 ([1]). Let A and N be any matrices and write ˆA = A+N . Then:

kA� ˆA
k

k
2

 kA� A
k

k
2

+ 2kN
k

k
2

kA� ˆA
k

k
F

 kA� A
k

k
F

+ kN
k

k
F

+ 2

p
kN

k

k
F

kA
k

k
F
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The lemma states that if ˆA � A is small, then the top k ranks of ˆA is nearly as good an approx-
imation to A as is the top k ranks of A itself. Notice that all of the error terms only depend on
rank-k matrices. We will use this lemma with ˜X and X and of course with the target rank as r.
We will soon show that kX � ˜Xk

2

 ✏kXk
F

, which implies:

kX � ˆXk
F

 kX �X
r

k+ k(X � ˜X)

r

k
F

+ 2

q
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r

k
F

kX
r

k
F
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r

k+prkX � ˜Xk
2

+ 2

qp
rkX � ˜Xk

2

kXk
F

 kX �X
r

k+ kXk
F

�p
r✏+ 2r1/4✏1/2

�
(2.25)

So if we can obtain a bound on kX � ˜Xk
2

of that form, we will have proved the theorem.

As for Propositions 2.6 and 2.7, the translation uses the first inequality of Achlioptas and McSh-
erry [1]. If X is rank r, the matrix ˆX �X has rank at most 2r, which means that:

k ˆX �Xk
F


p
2rk ˆX �Xk

2

 2

p
2rk ˜X �Xk

2

 2

p
2r✏kXk

F

For the second proposition, we first bound k ˆX �Mk
2

and then use the same argument.
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+ 2✏kXk
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 2kRk
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+ kR
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k
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).

To arrive at the second line, we use the fact that X
r

is the best rank r approximation to X , so
kX � X

r

k
2

 kX �Mk
2

= kRk
2

. We also use the triangle inequality on the term kXk
F

, but
use the fact that since the algorithm never looked at X on ⌦

C it is fair to set R
⌦

C = 0.

Let us now turn to the first phase. In our analysis of the Algorithm 1, we proved that the norm of
an incoherent vector can be approximated by subsampling. Specifically, Lemma 2.9 shows that
with high probability, the estimates ĉ

t

once appropriately rescaled are trapped between (1�↵)c
t

and (1 + ↵)c
t

where ↵ =

p
2µ/m

1

log(n/�) + 2µ

3m

1

log(n/�). The same is of course true for ˆf .
Setting m

1

� 32µ log(n/�) we find that ↵  1/2, meaning that by using in total 32nµ log(n/�)
samples in the first phase, we approximate the target sampling distribution to within a multiplica-
tive factor of 1/2 with probability � 1� �.
For the second pass, we show that ˜X is close to X in spectral norm. We use the following lemma:
Lemma 2.15. Provided that (1 � ↵)c

t

 d
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t
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Proof. Under the uniform at random sampling model, we will apply the non-commutative Bern-
stein inequality (Proposition A.4) to bound k ˜X � Xk

2

. Recall that for each column x
t

, we
observe a set of m

2,t

= m
2

n ĉt
ˆ

f

observations and form the zero-filled vector y
t

defined by:
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where {i
s

}m2,t

s=1

are the observations. Since the set of observations is sampled with replacement
(although duplicates in each half of the sample are thrown out), each entry of y

t

occurs with
probability d/m

2,t

, so y
t

is an unbiased estimate of x
t

. So we will apply the rectangular Matrix
Bernstein inequality to y
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which follows by the triangle inequality, Cauchy-Schwarz and the chain of inequalities:
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where ↵ is the error bound from the first phase of the algorithm.

As for the variance terms in Proposition A.4, both turn out to be quite small as we will soon see.
For the first term:
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Here the first equality is trivial while the second one uses the fact that off diagonals of y
t

yT
t

are
unbiased for x

t

xT

t

and hence we are left with a diagonal matrix. To arrive at the second line we
note that the spectral norm a diagonal matrix is simply the largest diagonal entry. Then we apply
the incoherence assumption and final our sampling distribution.

At this point we may apply the inequality which states that with probability � 1� �:
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The interactive sampling procedure has a dramatic effect on the bound in Lemma 2.15. If one
sampled uniformly across the columns, then both terms grows with the squared norm of the
largest column rather than with the average squared norms, which is much weaker when the
matrix energy is concentrated on a few columns. This is precisely when the row space is coherent.

To wrap up, recall that 1  µ  d and n � d. Setting m
1

� 32µ log(n/�) so that ↵  1/2, the
bound in Lemma 2.15 is dominated by:
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2

 kXk
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log
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d+ n

�

◆
.

Returning to Equation 2.25 we can now substitute in for ✏ and conclude the proof. B

2.5 Empirical Results

We perform a number of simulations to analyze the empirical performance of both Algorithms 1
and 3. The first set of simulations, in Figures 2.1 and 2.2, examine the behavior of Algorithm 1.
We work with square matrices where the column space is spanned by binary vectors, constructed
so that the matrix has the appropriate rank and coherence. The row space is spanned by either
random gaussian vectors in the case of incoherent row space or a random collection of standard
basis elements if we want high coherence.

In the first two figures (2.1(a) and 2.1(b)) we study the algorithms dependence on the matrix
dimension. For various matrix sizes, we record the probability of exact recovery as we vary the
number of samples allotted to the algorithm. We plot the probability of recovery as a function
of the fraction of samples per column, denote by p, (Figure 2.1(a)) and as a function of the total
samples per column m (Figure 2.1(b)). It is clear from the simulations that p can decrease with
matrix dimension while still ensuring exact recovery. On the other hand, the curves in the second
figure line up, demonstrating that the number of samples per column remains fixed for fixed
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Figure 2.1: (a): Probability of success of Algorithm 1 versus fraction of samples per column
(p = m/d) with r = 10, µ

0

= 1. (b): Data from (a) plotted against samples per column, m. (c):
Probability of success of Algorithm 1 versus fraction of samples per column (p = m/d) with
n = 500, µ

0

= 1. (d): Data from (c) plotted against rescaled sample probability p/(r log r).
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Figure 2.2: (a): Probability of success of Algorithm 1 versus fraction of samples per column (p =

m/d) with n = 500, r = 10. (b): Data from (a) plotted against rescaled sampling probability
p/µ

0

. (c): Probability of success of SVT versus rescaled sampling probability np/ log(n) with
r = 5, µ

0

= 1. (d): Probability of success of Algorithm 1 and SVT versus sampling probability
for matrices with highly coherent row space with r = 5, n = 100.

probability of recovery. This behavior is predicted by Corollary 2.2, which shows that the total
number of samples scales linearly with dimension, so that the number of samples per column
remains constant.

In Figures 2.1(c) and 2.1(d) we show the results of a similar simulation, instead varying the
matrix rank r, with dimension fixed at 500. The first figure shows that the fraction of samples per
column must increase with rank to ensure successful recovery while second shows that the ratio
p/(r log r) governs the probability of success. Figures 2.2(a) and 2.2(b) similarly confirm a linear
dependence between the incoherence parameter µ

0

and the sample complexity. Notice that the
empirical dependence on rank is actually a better than what is predicted by Corollary 2.2, which
suggests that r log2 r is the appropriate scaling. Our theorem does seem to capture the correct
dependence on the coherence parameter.

In the last two plots we compare Algorithm 1 against the Singular Value Thresholding algorithm
(SVT) of Cai et al. [40]. The SVT algorithm is a non-interactive iterative algorithm for nuclear
norm minimization from a set of uniform-at-random observations. In Figure 2.2(c), we show that
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Figure 2.3: (a): An example matrix with with highly non-uniform column norms and (b) the
sampling pattern of Algorithm 3. (c): Relative error as a function of sampling probability p for
different target rank r (µ = 1). (d): The same data where the y-axis is instead ✏/

p
r.

the success probability is governed by np/ log(n), which is predicted by the existing analysis of
the nuclear norm minimization program. This dependence is worse than for Algorithm 1, whose
success probability is governed by np as demonstrated in Figure 2.1(b). Finally, in Figure 2.2(d),
we record success probability versus sample complexity on matrices with maximally coherent
row spaces. The simulation shows that our algorithm can tolerate coherent row spaces while the
SVT algorithm cannot.

For Algorithm 3, we display the results of a similar set of simulations in Figures 2.3 and 2.4.
Here, we construct low rank matrices whose column spaces are spanned by binary vectors and
whose columns are also constant in magnitude on their support. The length of the columns is
distributed either log-normally, resulting in non-uniform column lengths, or uniformly between
0.9 and 1.1. We then corrupt this low rank matrix by adding a gaussian matrix whose entries have
variance 1

dn

. In Figure 2.3(a) we show a matrix constructed via this process and in Figure 2.3(b)
we show the set of entries sampled by Algorithm 3 on this input. From the plots, it is clear that
the algorithm focuses its measurements on the columns with high energy, while using very few
samples to capture the columns with lower energy.

In Figure 2.3(c), we plot the relative error, which is the ✏ in Equation 2.3, as a function of the
average fraction of samples per column (averaged over columns, as we are using non-uniform
sampling) for 500⇥ 500 mat rices of varying rank. In the next plot, Figure 2.3(d), we rescale the
relative error by

p
r, to capture the dependence on rank predicted by Theorem 2.5.

As we increase the number of observations, the relative error decreases quite rapidly. Moreover,
the algorithm needs more observations as the target rank r increases. Qualitatively both of these
effects are predicted by Theorem 2.5. Lastly, the fact that the curves in Figure 2.3(d) nearly line
up suggests that the relative error ✏ does scale with

p
r.

In Figure 2.4(a), we plot the relative error as a function of the average fraction of samples, p,
per column for different matrix sizes. We rescale this data by plotting the y-axis in terms ofpp✏
(Figure 2.4(b)). From the first plot, we see that the error quickly decays, while a smaller fraction
of samples are needed for larger problems. In the second plot, we see that rescaling the error by
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Figure 2.4: (a): Relative error of Algorithm 3 as a function of sampling probability p for different
size matrices with fixed target rank r = 10 and µ = 1. (b): The same data where the y-
axis is instead pp✏. (c): Relative error for interactive and non-interactive sampling on matrices
with uniform column lengths (column coherence µ = 1 and column norms are uniform from
[0.9, 1.1]). (c): Relative error for interactive and non-interactive sampling on matrices with highly
nonuniform column lengths (column coherence µ = 1 and column norms are from a standard
Log-Normal distribution).

p
p has the effect of flattening out all of the curves, which suggests that the relationship between

✏ and the number of samples is indeed ✏pp ⇣ 1 or that ✏ ⇣ 1p
p

. This phenomenon is predicted
by Proposition 2.7.

In the last set of simulations, we compare our algorithm with an algorithm that first performs
uniform sampling and then hard thresholds the singular values to build a rank r approximation.
In Figure 2.4(c), we use matrices with uniform column norms, and observe that both algorithms
perform comparably. However, in Figure 2.4(d), when the column norms are highly non-uniform,
we see that Algorithm 3 dramatically outperforms the passive sampling approach. This confirms
our claim that interactive sampling leads to better approximation when the energy of the matrix
is not uniformly distributed.

Finally, we compare Algorithm 3 with a non-interactive matrix approximation algorithm on two
real datasets. The non-interactive algorithm is the same hard thresholding algorithm used in
Figures 2.4(c) and 2.4(d). The first dataset is a 400-node subset of the King internet latency
dataset taken from Gummadi et al. [98]. This dataset is much larger but has many missing
entries so we used a 400⇥ 400 submatrix with minimal missing entries for our experiment. The
second dataset is a 1000⇥ 10, 000 submatrix of the PubChem molecular similarity dataset [35].
We used target rank 26 for the King dataset and 25 for the PubChem dataset.

In Figure 2.5, we record the log excess risk as a function of the fraction of samples for both
interactive and non-interactive matrix approximation algorithms. The interactive algorithm out-
performs the non-interactive one on both datasets, but the improvement is more drastic for the
King dataset. Moreover, the performance improvements are, in absolute terms, better in the low-
sample regime, which is apparent since the separation between the curves stays roughly constant,
but this is on a logarithmic scale. This demonstrates that interactive sampling is favorable for
these matrix approximation problems, and should be used in applications where it is feasible.
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Figure 2.5: Experiments on real datasets. Left: Log excess risk for passive and interactive matrix
approximation algorithms on a 400-node subset of the King internet latency dataset with target
rank r = 26. Right: Log excess risk for passive and interactive matrix approximation algorithms
on a 1000 ⇥ 10, 000 submatrix of the PubChem Molecular Similarity dataset with target rank
r = 25. Passive algorithm is based on uniform sampling followed by hard thresholding of the
singular values.

2.6 Conclusions

This paper considers the two related problems of low rank matrix completion and matrix approx-
imation. In both problems, we show how to use interactive sampling to overcome uniformity
assumptions that have pervaded the literature. Our algorithms focus measurements on interest-
ing columns (in the former, the columns that contain new directions and in the latter, the high
energy columns) and have performance guarantees that are significantly better than any known
passive algorithms in the absence of uniformity. Moreover, they are competitive with state-of-
the-art passive algorithms in the presence of uniformity. Our algorithms are conceptually simple,
easy to implement, and fairly scalable.

Turning to the themes of this thesis, we showed how interactive sampling enables a relaxation
of uniformity requirements for these completion and approximation problems. Specifically, our
algorithms do not require incoherence assumptions on the row space to succeed, and we showed
that all non-interactive procedures do. Our algorithms are also statistically and computationally
efficient, which can be seen both theoretically and empirically in simulations. Thus we believe
that these completion problems make a compelling case for interactive learning.
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Chapter 3

Interactive Hierarchical Clustering

Clustering problems involve assigning objects to one or more groups, so that objects in the same
group are very similar while objects in different groups are dissimilar. In hierarchical cluster-
ings, the groups have multiple resolutions, so that a large cluster may be recursively divided
into smaller sub-clusters. These types of problems are ubiquitous; they are fundamental tools
in exploratory data analysis, data mining, and many scientific domains. There exist many ef-
fective algorithms for clustering, but as data sets increase in size, the fact that these algorithms
require every pairwise similarity between objects poses a serious measurement and/or computa-
tional burden and limits the scope for application. It is therefore practically appealing to develop
clustering algorithms that are effective on large scale problems but also have low measurement
and computational overhead.

To achieve low overhead, we focus on reducing the number of similarity measurements required
for clustering. This approach results in an immediate reduction in measurements in applications
where similarities are observed directly, but it can also provide dramatic computational gains
in applications where similarities between objects are computed via some kernel evaluated on
observed object features. The case of internet topology inference is an example of the former,
where covariance in the packet delays observed at nodes reflects the similarity between them.
Obtaining these similarities requires injecting probe packets into the network and places a sig-
nificant burden on network infrastructure. Phylogenetic inference and other biological sequence
analyses are examples of the latter, where computationally intensive edit distances are often used.
Note that both situations result in a low memory footprint as fewer pairwise similarities need to
be stored. In both cases our algorithms have dramatically lower overhead than many popular
algorithms.

In this chapter, we propose a novel approach to hierarchical clustering through interactivity, an
algorithmic paradigm where only a small number of informative similarities are measured. We
develop a meta-algorithm that iteratively applies a base clustering algorithm to small groups of
objects and that can be instantiated with any similarity-based clustering algorithm This meta-
algorithm allows the user to specify a level of interactivity, and we provide theoretical analysis
that quantifies the resulting trade-off between measurement overhead and computation time on
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one hand, and statistical accuracy on the other.

As an example, we apply our framework to spectral clustering. Spectral clustering is a popu-
lar clustering technique that relies on the structure of the eigenvectors of the Laplacian of the
similarity matrix. These algorithms have received considerable attention in recent years because
of their empirical success, but they suffer from the fact that they require all n(n � 1)/2 sim-
ilarities and must compute a spectral decomposition of the n ⇥ n similarity matrix, which on
large datasets can be computationally prohibitive, in terms of both running time and space. Our
interactive algorithm avoids both of these limitations by subsampling few objects in each round
and only computing eigenvectors of very small sub-matrices. By appealing to previous statisti-
cal guarantees [16], we can show that this algorithm has desirable theoretical properties, both in
terms of statistical and computational performance.

We also establish several necessary conditions in the noisy constant block model, under which
we analyze spectral clustering. We give lower bounds on the sample complexity for interactive
procedures in the noiseless case and also a lower bound on non-interactive procedures for noisy
hierarchical clustering. Comparing this latter lower bound with the analysis for our interactive
spectral clustering algorithm concretely demonstrates that interactivity is a powerful learning
paradigm for hierarchical clustering from pairwise similarity information.

Our detailed contributions are:

1. We develop a principled method for converting a non-interactive non-hierarchical cluster-
ing algorithm into an interactive hierarchical one, and we show how performance guar-
antees on the subroutine translate into performance guarantees for hierarchical clustering
(Theorem 3.1). This technique can be thought of as a simple reduction: we reduce the
interactive hierarchical clustering problem to non-interactive flat clustering problem.

2. As an example, we give a detailed statistical analysis of the interactive spectral clustering
algorithm derived by our reduction. In a model for similarity based clustering, we show
that this interactive spectral algorithm use O(npolylog(n)) pairwise similarities and runs
in O(npolylog(n)) time, to obtain a hierarchical clustering on n objects (Theorem 3.2).

3. We prove that any similarity based clustering algorithm must obtain ⌦(n log n/ log log n)
similarities, even in the absence of noise (Theorem 3.3). This lower bound certifies the
near-optimality of our approach.

4. We also show lower bounds against non-interactive approaches. In the same model used for
Theorem 3.2, we show that any non-interactive sampling strategy followed by any recovery
algorithm must use ⌦(n2

) measurements to achieve the same statistical performance as
our non-interactive approach using O(n log

2 n) (Theorem 3.5). This certifies the power of
interactivity for this problem.

5. We complement these theoretical results with detailed empirical evaluation.

This chapter provides support for our thesis on all fronts. Our interactive clustering algorithm
is statistically more powerful than non-interactive approaches in the sense that we can recover
cluster structure with far fewer measurements. It also has theoretically and empirically faster
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running time as certified by Theorem 3.2 and our experimental evaluation. Lastly, we measure
uniformity by the size of the smallest cluster we hope to recover, where smaller clusters make
the problem less uniform, and our results are magnified in the presence of non-uniformity.

3.1 Related Work

There is a large body of work on hierarchical and partitional clustering algorithms, many coming
with various theoretical guarantees, but only few algorithms attempt to minimize the number of
pairwise similarities used [24, 87, 154]. Along this line, the work of Eriksson et al. [87] and
Shamir and Tishby [154] is closest in flavor to ours.

Eriksson et al. [87] develop an interactive algorithm for hierarchical clustering and analyze the
correctness and measurement complexity under a noise model where a small fraction of the
similarities are inconsistent with the hierarchy. This bears resemblance to the persistent noise
model that we study in Chapter 4, although the learning task considered there is substantially
different. They show that for a constant fraction of inconsistent similarities, their algorithm can
recover hierarchical clusters up to size ⌦(log n) using O(n log

2 n) similarities. Our analysis for
ACTIVESPECTRAL yields similar results in terms of noise tolerance, measurement complexity,
and resolution, but in the context of i.i.d. subgaussian noise rather than inconsistencies. Our
algorithm is also computationally more efficient.

Another approach to minimizing the number of similarities used is via perturbation theory, which
suggests that randomly sampling the entries of a similarity matrix preserves properties such as
its spectral norm [1]. With this result, the Davis-Kahan theorem suggests that spectral clustering
algorithms, which look at the eigenvectors of the Laplacian associated with the similarity matrix,
can succeed in recovering the clusters. This intuition is formalized by Shamir and Tishby [154]
who analyze a binary spectral algorithm that randomly samples b entries from the similarity
matrix. They show an `

2

bound on difference between the eigenvectors from before and after
subsampling, but such a bound does not immediately translate into a strong exact recovery guar-
antee. Indeed, to use this bound in the constant block model that we study here, one would need
b = ⌦(n2

) measurements to obtain an exact recovery guarantee, which provides essentially no
improvement. Our work, translated to the flat clustering setting is much stronger; Theorem 3.2
implies that O(n log n) similarities are needed to recover the clustering. Furthermore, we can
give guarantees on the size of smallest cluster ⌦(log n) that can be recovered in a hierarchy by
selectively sampling similarities at each level.

Recently Voevodski et al. [168] proposed an interactive algorithm for flat k-way clustering that
selects O(k) landmarks and partitions the objects using distances to these landmarks. Theoret-
ically, the authors guarantee approximate-recovery of clusters of size ⌦(n) using O(nk) pair-
wise distances. This idea of selecting landmarks bears strong resemblance to the first phase of
our interactive clustering algorithm and also has connections to the Landmark MDS algorithm
of de Silva and Tenenbaum [71]. These approaches are tied to specific algorithms, while our
framework is much more general. Moreover, we guarantee exact cluster recovery (under mild
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assumptions) rather than approximate recovery, which translates into guarantees on hierarchical
clustering. This distinction is important because of the recursive nature of hierarchical clustering.

A related direction is the body of work on efficient streaming and online algorithms for ap-
proximating the k-means and k-medians objectives (See, e.g., [47, 157]). As with Voevodski et
al. [168], the guarantees for these algorithms do not immediately translate into an exact recovery
guarantee, making it challenging to transform these approaches into hierarchical clustering algo-
rithms. Moreover, the success of spectral clustering in practice suggests that an efficient spectral
algorithm would also be very appealing. While there have been advances in this direction, the
majority of these require the entire similarity matrix be known a priori [92]. Apart from [154],
we know of no other spectral algorithm that optimizes the number of similarities.

Another related line of research focuses on building data structure for fast nearest neighbor com-
putations of a point set. Many of these structures build hierarchical clusterings of the data points
so that traversing the tree to find the nearest neighbor of a data point can be done in logarithmic
time [28, 172]. Both the vantage point tree and the cover tree have the additional property that
only O(n log(n)) distances are used to create the hierarchical clustering, which translates to both
measurement and computational efficiency in our setting. The main differences are: (a) these
algorithms assume a metric space, (b) the algorithms do not partition the points at each level,
but rather create overlapping coverings, and (c) the algorithms insert points into the structure
iteratively in contrast with the recursive partitioning of our algorithm. Further, we are not aware
of any statistical analysis of these data structures for the hierarchical clustering problem.

There are also a few papers that consider alternative models of interaction for clustering prob-
lems. Two types of interaction in the literature are supervision via must-link and cannot-link
constraints [27, 170], and via split or merge requests of an existing clustering [15, 18]. In these
models, interactivity supplements the pairwise similarities that are available up front and enables
guarantees under weaker separation assumptions. In contrast, in our setting, the similarities are
not available up front and we employ interactivity to selectively obtain them. Consequently, our
setting is more challenging than even the fully observed case.

Lastly, our approach loosely falls into the framework of reductions for machine learning [32].
The broad theme of this work is to leverage existing algorithms to solve more complex learning
tasks, and existing results show how many prediction problems, including structured predic-
tion [69], contextual bandits [4, 78], multi-class classification [126], can all be reduced to binary
classification. Our work shows how interactive hierarchical clustering can be reduced to non-
interactive non-hierarchical clustering, so that existing algorithms for the latter can immediately
be applied to the former.

3.2 Main Results

We first clarify some notation and introduce a hierarchical clustering model that we will analyze.
We refer to A as any flat clustering algorithm, which takes as parameters a dataset and a natural
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Algorithm 4 ACTIVECLUSTER(A, s, {x
i

}n
i=1

, k)

if n  s then return {x
i

}n
i=1
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of size s uniformly at random.
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}.
end for

output {C
j

, ACTIVECLUSTER(A, s, C
j

, k)}k
j=1

number k, indicating the number of clusters to produce. Throughout the chapter, k will denote
the number of clusters at any split, and we will assume that k is known and fixed across the
hierarchy. We let n be the number of objects in the dataset and define s to be a parameter to
our algorithm, influencing the number of measurements used by our algorithm. The parameter
s reflects a tradeoff between the measurement overhead and the accuracy; increasing s increases
the robustness of our method at the cost of requiring more measurements. Finally, our algorithms
employ an abstract, possibly noisy similarity function K, which can model both cases where
similarities are measured directly and where they are computed via some kernel function based
on observed object features.
Definition 3.1. A k-way hierarchical clustering C on objects {x

i

}n
i=1

is a collection of clusters
such that C

0

, {x
i

}n
i=1

2 C and for each C
i

, C
j

2 C either C
i

⇢ C
j

, C
j

⇢ C
i

or C
i

\ C
j

= ;.
For any cluster C, if 9C 0 with C 0 ⇢ C, then there exists a set {C

i

}k
i=1

of disjoint clusters such
that

S
k

i=1

C
i

= C.

Every hierarchical clustering C has a parameter ⌘ that quantifies how balanced the clusters are
at any split. Formally, ⌘ � maxsplits{C

1

,...,Ck}
maxi |Ci|
mini |Ci| , where each split is a non-terminal cluster,

partitioned into {C
i

}k
i=1

. ⌘ upper bounds the ratio between the largest and smallest clusters sizes
across all splits in C. This type of balancedness parameter has been used in previous analyses
of clustering algorithms [16, 87], and it is common to assume that the clustering is not too
unbalanced. For clarity of presentation, we will state our results assuming ⌘ = O(1), although
our proofs contain a precise dependence between the sampling parameter s and ⌘.

3.2.1 An Interactive Clustering Framework

Our primary contribution is the introduction of a novel framework for hierarchical clustering that
is efficient both in terms of the number of similarities used and the algorithmic running time. To
recover any single split of the hierarchy, we run a flat clustering algorithm A on a small subset of
the data to compute a seed clustering of the dataset. Using this initial clustering, we place each
remaining object into the seed cluster for which it is most similar on average. This results in a
flat clustering of the entire dataset, using only similarities to the objects in the small subset.
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Figure 3.1: Sampling pattern of Algorithm 4

By recursively applying this procedure to each cluster, we obtain a hierarchical clustering, using
a small fraction of the similarities. In this recursive phase, we do not observe any measurements
between clusters at the previous split, i.e. to partition C

j

, we only observe similarities between
objects in C

j

. This results in an interactive algorithm that focuses its measurements to resolve
the higher-resolution cluster structure.

Pseudocode for the meta-algorithm is shown in Algorithm 4. As a demonstration, in Figure 3.1,
we show the sampling pattern of Algorithm 4 on the first and second splits of a hierarchy, in
addition to the patterns at the end of the computation. Only the similarities shown in white are
needed. As is readily noticeable, the algorithm uses very few similarities but is stable able to
recover this hierarchical clustering.

Our main theoretical contribution is a characterization of Algorithm 4 in terms of probability of
success in recovering the true hierarchy (denoted C?), measurement, and runtime complexity. To
make these guarantees, we will need some mild restrictions on the similarity function K, which
ensure that the similarities agree with the hierarchy (up to some random noise):
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K1 states that the similarity from an object x
i

to its cluster should, in expectation, be larger than
the the similarity from that object to any other cluster. This is related to the Tight-Clustering con-
dition used by Eriksson et al. [87] and less stringent than earlier results which assume that within-
and between-cluster similarities are constant and bounded in expectation [147]. Moreover, an
assumption of this form seems necessary to ensure that one could identify the clustering with
access to a non-random similarity function, K. K2 enforces that within- and between-cluster
similarities concentrate appropriately. This condition is satisfied, for example, if similarities
are constant in expectation, perturbed with independent subgaussian noise. We emphasize that
K2 subsumes many of the assumptions of previous clustering analyses (for example [16, 147]).
Moreover, if the similarity function is deterministic, then K2 is altogether unnecessary, and some
improvements to our algorithm are possible (see Proposition 3.4).

Our main results characterizes Algorithm 4 under assumptions K1 and K2:
Theorem 3.1. Let {x

i

}n
i=1

be a dataset with true hierarchical clustering C?, let K be a similarity
function satisfying assumptions K1 and K2 and consider any flat clustering algorithm A with the
following property:

A1 For any dataset {y
i

}m
i=1

with clustering C 0 where K satisfies K1 and K2, A({y
i

}m
i=1

, k) re-
covers the first split of C 0 with probability at least 1� c

1

mke�m for some constant c
1

> 0.

Then Algorithm 4, on input (A, s, {x
i

}n
i=1

, k):

R1 recovers all clusters of size at least s with probability:

1� c
0

n exp

✓ �s
2(1 + ⌘)2

◆
� c

1

n2

exp(�s)� C
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nk log n exp
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for universal positive constants c
0

, c
1

and for another constant C
⌘

that depends only on ⌘.

This probability of success is 1� o(1) as long as s = !
⇣
max{1, �2

�

2

} log(nk)
⌘

.

R2 uses O(ns log n) similarity measurements.

R3 runs in time O(nA
s

+ ns log n) where A on a datasets of size s runs in time O(A
s

).

At a high level, the theorem says that the clustering guarantee for a flat, non-interactive algorithm,
A, can be translated into a hierarchical clustering guarantee for an interactive version of A, and
that this new algorithm enjoys significantly reduced measurement and runtime complexity. The
only property needed by A is that it recovers a flat clustering with very high probability. While
the probability of success seems strangely high, we will show that for a fairly intuitive model,
a simple spectral clustering algorithm meets assumption A1. Verifying that the model satisfies
the conditions K1 and K2, immediately results in a guarantee for the interactive version of this
spectral algorithm.

We defer the proof of this theorem, and all theoretical results in this chapter to Section 3.4.
However, before proceeding, some remarks are in order. First, by plugging in the lower bound
for s into the upper bound on the measurement complexity, we see that Algorithm 4 needs
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Algorithm 5 SPECTRALCLUSTER(W )

Compute Laplacian L = D �W , D
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=

P
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 {i : v
2
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2

 {j : v
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(j) < 0}
output {C

1

, C
2

}.

O(n log(nk) log n) similarities, which is considerably less than the O(n2

) similarities required
by a non-interactive algorithm. Second, at the lower bound for s, we see that unless A runs in
exponential time, Algorithm 4 runs in ˜O(n), which is polynomially faster than any clustering
algorithm that observes all of the similarities, as such an algorithm must take ⌦(n2

) time.

3.2.2 Interactive Spectral Clustering

To make the guarantees in Theorem 3.1 more concrete, we show how to translate the result into a
real guarantee for a specific subroutine algorithm A. We study a simple spectral algorithm (See
pseudocode in Algorithm 5) into an interactive clustering algorithm, using the analysis from
Balakrishnan et al. [16]. The algorithm operates on hierarchically structured similarity matrices
referred to as the noisy Constant Block Matrices (again from Balakrishnan et al. [16]).

We study the special case of binary hierarchical clustering, where each non-terminal cluster is
partitioned into exactly two groups. As a naming convention, we identify a cluster by a string ⇠
of L and R symbols. The two sub-clusters of a non-terminal cluster C

⇠

are C
⇠�L and C

⇠�R.

The noisy Constant Block Model is defined using this terminology as follows:
Definition 3.2. A similarity matrix W is a noisy constant block matrix (noisy CBM) if W ,
A+R where A is ideal and R is a perturbation matrix:

• An ideal similarity matrix is characterized by off-block diagonal similarity values �
⇠

2
[0, 1] for each cluster C

⇠

such that if x 2 C
⇠�L and y 2 C

⇠�R, where C
⇠�L and C

⇠�R are
two sub-clusters of C

⇠

at the next level in a binary hierarchy, then A
x,y

= �
⇠

. Additionally,
min{�

⇠�R, �⇠�L} � �
⇠
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⇠

{min{�
⇠�R, �⇠�L} � �⇠}, �0}, where �

0
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the minimum overall similarity.

• A symmetric (n⇥n) matrix R is a perturbation matrix with parameter � if (a) E(R
ij

) =

0, (b) the entries of R are subgaussian, that is E(exp(tR
ij

))  exp

⇣
�

2

t

2

2

⌘
and (c) for each

row i, R
i1

, . . . R
in

are independent.

To apply Theorem 3.1, we need to verify that the assumption K1 and K2 are met and Algorithm 5
succeeds with exponentially high probability. Checking that these conditions hold provided the
signal-to-noise ratio is large enough results in the following guarantees for ACTIVESPECTRAL,
the interactive version of Algorithm 5. Proof of this theorem is deferred to Section 3.4.
Theorem 3.2. Let W be a noisy CBM with and ⌘ = O(1), and with n � n

0

, the latter of
which is a universal constant. Then for any m � s, ACTIVESPECTRAL succeeds in recovering
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all clusters of size m with probability 1 � o(1) as long as s = !
⇣
max{1, �2

�

4

, �
4

�

4

} log(n)
⌘

.

ACTIVESPECTRAL uses O(ns log n) measurements and runs in O(ns2 log s+ ns log n) time.

This theorem quantifies the tradeoff between statistical robustness and measurement complexity
for the hierarchical spectral algorithm. On one end, if �2/� = ⌦(1), then ACTIVESPECTRALcan
successfully recover clusters of size log n while using O(n log

2 n) measurements. At the other
end of this spectrum, if s = ⇥(n), then we can tolerate �

2

�

2

⇣
q

n

logn

, but can only recover

clusters of size ⇥(n). This is essentially the same as the result of Balakrishnan et. al. [16], who
show that by using O(n2

) measurements, one can tolerate noise that grows fairly rapidly with n.
Varying s allows for interpolation between these two extremes.

Several remarks are in order:

1. First, note that the condition s must grow faster than log(n) implies that the smallest clus-
ters of the hierarchy cannot be recovered. These clusters are irrecoverably buried in noise,
so one should not expect that recovery is possible.

2. The condition that �2/� = ⌦(1) is undesirable for several reasons. Since the similarities
are bounded between zero and one, �2  �, so this condition is more stringent than re-
quiring that �/� = ⌦(1), which is a more natural measure for the signal-to-noise ratio.
Secondly, if the minimum cluster size remains fixed as n grows, � must decrease, which
implies that we require � ! 0 for consistent recovery.

3. On the other hand if the depth of the hierarchy remains fixed as n increases, then � can
remain constant, so that it suffices to have � = O(1) for exact recovery. Unfortunately, for
this to happen, the minimum cluster size must scale linearly with n, although in this case
one can still aggressively subsample the matrix to recover all of these clusters.

The proof of this Theorem is not quite a direct application of Theorem 3.1. Instead, we show that
Algorithm 5 meets assumption A1 modulo a term that depends on � and �, and then we plug this
into Equation 3.1 (replacing the second exponential term). Solving for s in the updated version of
Equation 3.1 proves the theorem. If we instead directly applied Theorem 3.1, we would require
the SNR to be ⌦(1) and arrive at one end of the tradeoff between robustness and measurement
complexity. Our approach allows one to see how varying s affects the tolerable SNR.

3.2.3 Active k-means clustering

It is also possible to insert Lloyd’s algorithm for k-means clustering into our framework, but we
cannot prove statistical performance guarantees since it is unknown whether Lloyd’s algorithm
satisfies assumption A1 for any meaningful model. k-means helps illuminate the differences
between observing similarities directly and computing similarities from observed object features.
Conventionally, k-means fits into the latter framework. Here, the interactive version does not
enjoy a reduced measurement complexity, because all objects must be observed, but it can lead
to running time improvements as fewer distance/kernel evaluations are required.
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A less traditional way to use k-means is to represent each object as a n-dimensional vector of
its similarity to each other object. Here, we can apply k-means to a n ⇥ n similarity matrix,
much like we can apply Spectral Clustering, and this algorithm can be made interactive using
our framework. While we cannot develop theoretical guarantees for this algorithm, which we
call ACTIVEKMEANS, our experiments demonstrate that it performs very well in practice.

3.2.4 Fundamental Limits

Universal Limits: We now turn to lower bounding the number of similarities needed to recover a
hierarchical clustering. We first give a necessary condition on the number of similarities needed
by any algorithm in the absence of noise. Note that this result applies to both interactive and
non-interactive algorithms. We prove the following theorem:
Theorem 3.3. Consider a noiseless hierarchical clustering problem on n objects with minimum
cluster size m. For any algorithm A, if A guarantees exact recover of the true hierarchy it must
be the case that A has measurement complexity

n log

2

�
n

me

�

log

2

[log

2

(n/m) + 1]

.

This theorem asserts that ⌦(n log n/ log log n) measurements are necessary to recover all con-
stant sized clusters, even in the absence of noise. The proof uses two main ideas. First, we use
a combinatorial argument to count the total number of hierarchical clusterings on n objects with
minimum cluster size m. Then, we use an adversarial construction, whereby a learner attempts
to identify the clustering while an adversary attempts to hide it. In similar spirit to version-space
algorithms, we show that for any query made by the algorithm, the adversary can provide a re-
sponse that does not significantly reduce the number of consistent clusterings. Combining this
with the counting argument gives a necessary condition on the number of queries any algorithm
must make.

Notice that Theorem 3.1 shows that Algorithm 4 uses ⌦(n log

2 n) similarities to recover clusters
up to size log n. This difference in measurement complexity in comparison with the necessary
condition in Theorem 3.3 is due to the fact that Algorithm 4 was designed to be robust to noise,
and to get closer to the fundamental limit, one must build a more brittle algorithm. Specifically,
one can nearly achieve the limit in Theorem 3.3 by a simple algorithm that samples one point,
thresholds the similarities between all of the objects and that point to form two clusters, and then
recursively partitions. We show rigorously that this algorithm will recover all of the clusters and
that it uses O(n log n) similarities, which we summarize in the following:
Proposition 3.4. Let C? be a 2-way hierarchy with balance factor ⌘ = 1 where K satisfies
K1 and K2 with � = 0. Then there exists an algorithm that uses n log(n/m) similarities and
deterministically recovers all clusters of size at least m in C?.

This shows that roughly n log n similarities are necessary and sufficient to recover hierarchical
clusterings on n objects. Interestingly, if m is large, then far fewer similarities are necessary, and
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as we will see non-interactive algorithms come close to achieving these fundamental limits. If
m = n/2, or just one partition is required, the algorithm used to prove Proposition 3.4 is actually
non-interactive, and it meets the necessary condition established in Theorem 3.3, which applies
to both interactive and non-interactive algorithms. On the other hand, for m ⌧ n, interactivity
appears to be necessary to achieving low measurement complexities.

Limits on non-interactive algorithms: In order to demonstrate performance gains from the
interactive sampling model, it is important to establish necessary conditions on non-interactive
procedures. This is precisely the content of our next result.

To state the theorem precisely, we need some new definitions. We define a class of models
H(n,m, �) as the set of all hierarchical clusterings on n objects where the minimum cluster size
is m and the difference between within and between cluster similarities is � at every level of the
hierarchy. Thus, every model C 2 H(n,m, �) corresponds to a n ⇥ n similarity matrix M [C].
In the non-interactive setting, we are given a sensing budget ⌧ and are allowed to distribute this
sensing budget across the coordinates of the similarity matrix. A sensing strategy is a matrix
B 2 Rn⇥n

+

such that
P

i,j

b
ij

 ⌧ . Given this, our observation is the matrix:

A
ij

= M
ij

[C] + B�1/2

ij

N (0, 1) = N (M
ij

[C], B�1

ij

)

Note that this setup is a generalization of non-interactive sampling for hierarchical clustering
(with �2

= 1) considered earlier, as one can obtain a non-integral number of samples per similar-
ity, rather than just a single sample for a subset of the similarities. A typical sampling approach
for hierarchical clustering has B

ij

2 {0, 1} for all i, j with
P

i,j

B
ij

as the measurement budget.
Our set up strictly generalizes this class of sampling strategies.

Given such an observation, the goal of a recovery algorithm T will be to identify the model C
with low probability of error. Specifically we are interested in lower bounding the minimax risk:

R(H(n,m, �), ⌧) = inf

B:kBk
1

⌧,T

sup

C2H(n,m,�)

P[T (A) 6= C]

Notice that this probability of error is exactly the same as the probability that the algorithm T fails
to recover all clusters of size m. This is a special case of the structured normal means problem
studied in Chapter 5. A consequence of Theorem 5.5 and Proposition 5.6 is the following:
Theorem 3.5. If n,m are both powers of two, then the minimax risk, when observing the entire

matrix, is bounded from below by 1/2 when � 
q

log(nm/6)

(8m�4)

. Under budget constraint ⌧ , the
minimax risk is bounded from below by 1/2 when:

� 
s �

n

2

�

⌧(8m� 4)

log(nm/6)

The first part of this theorem, where the entire matrix is observed, was established by Balakrish-
nan et al. [16], although our proof technique is more general. The second part of the theorem
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is entirely new, and it lower bounds the performance of any passive sampling strategy followed
by any recovery algorithm for the hierarchical clustering problem. To compare with our inter-
active approach and the guarantee in Theorem 3.2, we set � = ⇥(1) and solve for ⌧ , arriving at
⌧ ⇣ n

2

log(nm

m

. We compare this bound to our interactive approach.

To do this comparison, note that since we are in a constant SNR regime, we can simply apply
Theorem 3.2. This result says that the interactive procedure uses O(ns log(n)) measurements
and recovers all clusters of size m � s, provided that s = !(log n). If we set s = ⇥(log

2 n),
we see that we can recover clusters of size m with sensing budget independent of m, i.e. with
sensing budget ⇥(npolylog(n)), provided that m = ⌦(log

2 n). Non-interactive procedures can
achieve nearly linear sensing budget only if the smallest cluster sizes are also nearly linear.

This shows significant performance gain due to interactive sampling, and this gain is most strik-
ing when recovering big clusters, at the top of the hierarchy and small clusters towards the bot-
tom. This is line with the main theme of our thesis, that interactive procedures are particularly
powerful in the presence of non-uniformity, which in this case relates to the cluster sizes.

3.3 Experimental Results

In this section we describe our empirical evaluation of the interactive clustering approaches de-
scribed in Section 3.2. We start with several practical considerations.

3.3.1 Practical Considerations

ACTIVESPECTRAL as stated has some shortcomings that enable theoretical analysis but that are
undesirable for practical applications. Specifically, the fact that k is known and constant across
splits in the hierarchy and the balancedness condition are both assumptions that are likely to be
violated in any real-world setting. We therefore develop a variant of ACTIVESPECTRAL, called
HEURSPEC, with several heuristics.

First, we employ the popular eigengap heuristic, in which the number of clusters k is chosen so
that the gap in eigenvalues �

k+1

� �
k

of the Laplacian is large. Secondly, we propose discarding
all subsampled objects with low degree (when restricted to the sample) in the hopes of removing
underrepresented clusters from the sample. In the averaging phase, if an object is not highly
similar to any cluster represented in the sample, we create a new cluster for this object. We
expect that in tandem, these two heuristics will help us recover small clusters. By comparing the
performance of HEURSPEC to that of ACTIVESPECTRAL, we indirectly evaluate these heuristics.
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Figure 3.2: Simulation experiments. Top row: Noise thresholds for Algorithm 5, k-means clus-
tering, ACTIVESPECTRAL, and ACTIVEKMEANS with s = log

2

(n) for interactive algorithms.
Bottom row from left to right: probability of success as a function of s for n = 256, � = 0.75,
outlier fractions on noisy CBM, probing complexity, and runtime complexity.

3.3.2 Simulations

In this section we present some empirical results on synthetic data. By Theorem 3.2, we expect
ACTIVESPECTRAL to be robust to a constant amount of noise �, meaning that it will recover all
sufficiently large splits with high probability. In comparison, Balakrishnan et al. [16], show that
spectral clustering can tolerate noise growing with n. We contrast these guarantees by plotting
the probability of successful recovery of the first split in a noisy CBM as a function of � for
different n in Figure 3.2. 3.2(a) demonstrates that indeed the noise tolerance of spectral clus-
tering grows with n while 3.2(c) demonstrates that ACTIVESPECTRAL enjoys constant noise
tolerance. Figures 3.2(b) and 3.2(d) suggest that similar guarantees may hold for k-means and
ACTIVEKMEANS.

Our theory also predicts that increasing the sampling parameter improves the performance of
ACTIVESPECTRAL. To demonstrate this, we plot the probability of successful recovery of the
first split of a noisy CBM of size n = 256 as a function of s for fixed noise variance. We compare
three algorithms, ACTIVESPECTRAL, ACTIVEKMEANS, and Algorithm 1 of Shamir and Tishby
[154], which subsamples entries of the similarity matrix. In theory, ACTIVESPECTRAL requires
⌦(n log n) total measurements to recover a single split, whereas Shamir and Tishby [154] show
that their algorithm requires ⌦(n log

3/2 n) (recall that this does not immediately translate into
a clustering guarantee). Figure 3.2(e) demonstrates that this improvement is also noticeable in
practice.

The simulations in Figures 3.2(a)-(e) only examine the ability of our algorithms to recover the
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first split of a hierarchy, while our theory predicts that all sufficiently large clusters can be reliably
recovered. One way to measure this is the outlier fraction metric between the clustering returned
by an algorithm and the true hierarchy [87]. For any triplet of objects x

i

, x
j

, x
k

we say that the
two clusterings agree on this triplet if they both group the same pair of objects deeper in the
hierarchy relative to the third object and disagree otherwise. The outlier fraction is simply the
fraction of triplets for which the two clusterings agree.

In Figure 3.2(f), we plot the outlier fraction for six algorithms as a function of � on the noisy
HBM. The algorithms are: Hierarchical Spectral (SC), Single Linkage (SL), HEURSPEC (HSC),
ACTIVESPECTRAL (ASC), Hierarchical k-Means (KM), and ACTIVEKMEANS (AKM). These
experiments demonstrate that the non-interactive algorithms (except single linkage) are much
more robust to noise than the corresponding interactive ones, as predicted by our theory, but also
that the heuristics described in Section 3.3.1 have dramatic impact on performance.

Lastly, we verify the measurement and run time complexity guarantees for our interactive al-
gorithms in comparison to the non-interactive versions. In Figure 3.2(g) and 3.2(h), we plot
the number of measurements and running time as a function of n on a log-log plot for each
algorithm. The three non-interactive algorithms have steeper slopes than the interactive ones,
suggesting that they are polynomially more expensive in both cases.

3.3.3 Real World Experiments

To demonstrate the practical performance of our framework, we apply our algorithms to three
real-world datasets and one additional synthetic dataset. The datasets are: The set of articles
from NIPS volumes 0 through 12 [148], a subset of NPIC500 co-occurrence data from the Read-
the-Web project [131] which we call RTW, a SNP dataset from the HGDP [138], and a synthetic
phylogeny dataset produced using phyclust [49].

The NIPS dataset consists of 1740 machine learning research articles from Neural Information
Processing Systems Volumes 0-12. Each article was converted into a TF-IDF vector and pairs of
vectors were compared using cosine similarity.

The RTW data is a subsampled version of the NPIC500 co-occurrence dataset. It originally
consisted of 88k noun-phrases and 99k contexts with NP-context co-occurrence information.
We further down-sampled to 2000 NPs and used TF-IDF and cosine similarity to construct a
noun-phrase by noun-phrase co-occurrence matrix.

The SNP dataset consists of base pair information at 2810 loci for 957 individuals. The dataset
is annotated into three levels, where each individual is assigned a population, country of origin,
and continent. Each individual has two haplotype sequences, and we arbitrarily chose the ma-
ternal haplotype. We measure similarity using edit distance. In this case, computing all pairwise
similarities is computationally intensive; it took over 1 hour for this computation.

The phylogeny dataset is a synthetic phylogeny generated by the phyclust R package. It con-
sists of 2048 genetic sequences, each consisting of 2000 base pairs. phyclust also generates a

54



Algorithm HKM HRC Probes Time (s)
SNP

HEURSPEC 0.022 475 0.38 1350
ACTIVESPECTRAL 0.019 19.1 0.13 450
ACTIVEKMEANS 0.018 12.5 0.12 420

k-means 0.0028 18.7 1 160
Spectral 0.0075 130 1 5660

Phylo
HEURSPEC 0.020 371 0.29 2500

ACTIVESPECTRAL 0.012 22.9 0.071 600
ACTIVEKMEANS 0.012 25 0.071 555

k-means 0.0017 22.9 1 967
Spectral 0.0022 23.5 1 997

NIPS
HEURSPEC 0.0088 65.7 0.19 140

ACTIVESPECTRAL 0.010 1.5 0.094 79.4
ACTIVEKMEANS 0.011 1.37 0.12 29

k-means 0.0017 1.66 1 723
Spectral 0.0033 6.30 1 26200

RTW
HEURSPEC 0.0079 18.1 0.41 419

ACTIVESPECTRAL 0.0084 0.64 0.13 151
ACTIVEKMEANS 0.0073 0.485 0.22 70.9

(a)

Algorithm SNP Phylo
HEURSPEC 0.596 0.878

ACTIVESPECTRAL 0.374 0.971
ACTIVEKMEANS 0.383 0.94

(b)

0.60.811.2

A MCMC Approach to Hierarchical Mixture Modelling

Learning Mixture Hierarchies

The Infinite Gaussian Mixture Model

Very Fast EM−Based Mixture Model Clustering ...

Time Series Prediction using Mixtures of Experts

Adaptively Growing Hierarchical Mixtures of Experts

Constructive Algorithms for Hierarchical Mixtures of Experts

Real−Time ... Using Analog VLSI Circuits

VLSI Implementation of ... Using an Analog Neural Computer

An Analog VLSI Neural Network for ...

A Simple and Fast Neural Network Approach to Stereovision

A Neural Model of Visual Contour Integration

Plasticity of ... in Real and Artificial Neural Systems of Vision

(c)

Figure 3.3: Experiments: 3.3(a): Comparison of algorithms on various datasets. 3.3(b): Outlier
fractions on datasets with ground truth clustering. 3.3(c): Subset of the NIPS hierarchy.

reference phylogeny that serves as ground truth. As with the SNP data, we measured similarity
using edit distance. Computing all pairs of similarities took over 4 hours.

In the phylogeny and SNP datasets, we have access to a reference tree that can be used in our
evaluation. In these cases we can report the outlier fraction, as we did in simulation. However,
the other datasets lack such ground truth and, without it, evaluating the performance of each
algorithm is non-trivial. Indeed, there is no well-established metric for this sort of evaluation.

For this reason, we employ two distinct metrics to evaluate the quality of hierarchical clusterings.
They are a hierarchical K-means objective (HKM) [115] and an analogous hierarchical ratio-cut
(HRC) objective, both of which are natural generalizations of the k-means and ratio cut objectives
respectively, averaging across clusters, and removing small clusters as they bias the objectives.
Formally, let C be the hierarchical clustering and let ¯C be all of the clusters in C that are larger
than log n. For each C 2 ¯C let x

C

be the cluster center. Then:

HKM(C) =

1

| ¯C|
P

C2 ¯C
1

|C|
P

xj2C
x

T
j xC

||xj ||||xC ||

HRC(C) =

1

| ¯C|
P

C2 ¯C
P

Ck✓C

K(Ck,C\Ck)

2|Ck|

In Table 3.3(a) and 3.3(b), we record experimental results across the datasets for our algorithms.
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On the read-the-web dataset, we were unable to run the non-interactive algorithms. On the SNP
and phylogeny datasets, we include computing similarities via edit distance in the running time
of each algorithm, noting that computing all pairs takes 6500 and 15000 seconds respectively.
The immediate observation is that these algorithms are extremely fast; on the SNP and phy-
logeny datasets, where computing similarities is the bottleneck, our approach leads to significant
performance improvements. Moreover, the algorithms perform well by our metrics; they find
clusterings that score well according to HKM and HRC, or that have reasonable agreement with
the reference clustering1.

We are also interested in more qualitatively understanding the performance of these algorithms.
For the NIPS data, we manually collected a small subset of articles and visualized the hierarchy
produced by ACTIVEKMEANS restricted to these objects. The hierarchy in Figure 3.3(c) is what
one would expect on the subset, attesting to the performance ACTIVEKMEANS. On the other
hand, this same evaluation on the RTW data demonstrates that interactive algorithms do not
perform well on this dataset, while the non-interactive algorithms do. We suspect this is because
the RTW dataset consists of many small clusters that do not get sampled by our approach.

For the SNP and phylogeny datasets, the permuted heatmaps are clear enough to be used in
qualitative evaluations. These heatmaps are shown in Figure 3.4, and they suggest that all three
interactive algorithms perform very well on these datasets. Heatmaps for the remaining datasets
are less clear, but are included for completeness.

3.4 Proofs

In this section we provide proofs for all theorems in this chapter.

3.4.1 Proof of Theorem 3.1

Before beginning the proof of the three claims in Theorem 3.1, we first state and prove two
simple lemmas bounding the number of splits and levels in a balanced hierarchy.
Lemma 3.6. A k-way hierarchical clustering on n objects has at most n

k�1

splits.

Proof. A hierarchical clustering can be represented as a rooted tree T , where each leaf is a
singleton cluster and each internal node corresponds to a cluster containing all objects below this
node. Every k-way hierarchy can be represented by a k-ary tree and the number of internal nodes
in the k-ary tree exactly corresponds to the number of splits in the k-way hierarchy. Let f(x) be
the number of internal nodes in a k-ary tree with x leaves. It is easy to see that the recurrence

1 The SNP dataset is a k-way hierarchy and our algorithms (apart from HEURSPEC) recover binary hierarchies
that cannot have high agreement with the reference.
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Figure 3.4: Heatmaps of permuted matrices for SNP, Phylo, NIPS, and RTW (from left to right).
Algorithms are HEURSPEC, ACTIVESPECTRAL, and ACTIVEKMEANS from top to bottom.

f(x) = f(x � k + 1) + 1 holds for all x � k and f(x) = 1 for all 0 < x < k. Solving this

recurrence, we see that f(n)  n

k�1

proving the Lemma. B
Lemma 3.7. Let ⌘ be the balance factor of the hierarchy and let l be the total number of levels
in the hierarchy. Then:

l  1

log

⇣
1+⌘

⌘

⌘
log n  C

⌘

log n

Proof. Note that for any split, the larger of the two clusters has ⌘

1+⌘

fraction of the nodes. After
l levels, we want the largest cluster to have size at most 1, or

✓
⌘

1 + ⌘

◆
l

n  1

Solving for l in this equation yields the result. B
We now turn to proving the theorem. In the proof, we will define several failure events and first
show that the algorithm succeeds if none of the failure events occur. We will then proceed to
bound the probability of each of the failure events.
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We establish some notation before proceeding. In the true hierarchy, we will denote each partition
problem (or split) by S

1

, . . . ,S n
k�1

(recall that by Lemma 3.6, there are at most n

k�1

of these).
Moreover, each split except for the split at the root of the hierarchy has a parent split, which is
the clustering problem directly above it in the hierarchy. For a split S

i

, denote its parent split by
S
⇡(i)

so that ⇡(i) is the index of i’s parent in the hierarchy.

For each split S
i

, we have three types of error events: a subsampling error event, a error event on
the correctness of the algorithms A and an error event on the averaging phase. In the subsampling
phase, we will report an error, if the subsampled balance factor for the clustering problem at
split i, ⌘̂ is larger than 2⌘ + 1 (we will precisely define ⌘̂ subsequently). If ⌘̂  2⌘ + 1, then
the assumption that ⌘ = O(1) implies that ⌘̂ = O(1) so that A can successfully cluster the
subsample. Formally, these error events are defined as follows:

S
i

= {at split S
i

, ⌘̂ � 2⌘ + 1}
A

i

= {Algorithm A fails at split S
i

}
V
i

= {Averaging fails at level S
i

}

It is easy to see that:

P[failure]  P[
n[

i=1

S
i

[ A
i

[ V
i

]. (3.2)

In words, the algorithm only fails if one of these error events occurs. At this point, one could use
a union bound to decompose this further into a sum of failure probabilities, but it is challenging
to bound each failure probability independently of the other events. Instead, we will appeal to
the following lemma to upper bound the right hand side via a more suitable decomposition.
Lemma 3.8. Let B

0

, B
1

, . . . , B
t

be events in some measurable space. Then:

P[
t[

i=0

B
i

]  P[B
0

] +

tX

i=1

P[B
i

|¬B
0

, . . . ,¬B
i�1

]

Proof. First, the following identity is straightforward:

t[

i=0

B
i

=

t[

i=0

 
B

i

\
i\

j=0

¬B
j

!

Now, using a union bound and the chain rule:

P
"

t[

i=0

B
i

#


tX

i=0

P
"
B

i

i\

j=0

¬B
j

#
=

tX

i=0

P
"

i\

j=0

¬B
j

#
P
"
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|
i\

j=0

¬B
j

#


tX

i=0

P[B
i

|¬B
0

, . . . ,¬B
i�1

],
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Where in the last step we used that probabilities must be upper bounded by 1. B

Using Lemma 3.8, we can decompose the right hand side of Equation 3.2 as:

P[S
1

] + P[A
1

|¬S
1

] + P[V
1

|¬S
1

,¬A
1

] +

+

P n
k�1

i=2

P[S
i

|¬S
0

,¬A
0

,¬V
0

, . . . ,¬S
i�1

,¬A
i�1

,¬V
i�1

] +

P[A
i

|¬S
0

,¬A
0

,¬V
0

, . . . ,¬S
i�1

,¬A
i�1

,¬V
i�1

,¬S
i

] +

P[V
i

|¬S
0

,¬A
0

,¬V
0

, . . . ,¬S
i�1

,¬A
i�1

,¬V
i�1

,¬S
i

,¬A
i

]

Next we exploit independence of events to simplify each of the expressions. In particular, we
have the following independence assertions: each subsampling phase is independent of all previ-
ous error events, conditioned on the successful recovery of the corresponding parent clustering,
each execution of the algorithm succeeds (or fails) independent of every previous failure event,
conditioned on the success of subsampling at that split, and each averaging phase succeeds (or
fails) independent of every previous failure event, conditioned on the success of sampling and
the black-box algorithm at that split. With this assertions we can reduce the above expression to:

P[S
1

] +

n
k�1X

i=2

P[S
i

|¬A
⇡(i)

,¬V
⇡(i)

] +

n
k�1X

i=1

P[A
i

|¬S
i

] +

P n
k�1

i=1

P[V
i

|¬S
i

,¬A
i

]

In the subsequent sections, we will bound each of these conditional probabilities. By showing
that the sum of these conditionals is small, we will arrive an an upper bound on the failure
probability of our algorithm.

The Subsampling Phase

Here we bound the probability of the event S
i

, conditioned on the successful recovery of S
i

’s
parent cluster. We need to demonstrate that the balance factor ⌘̂, restricted to the subsample, is
upper bounded by 2⌘+1 after subsampling s objects, and moreover we have to do this across all
splits of the hierarchy. Consider one split at first; we have n objects and k clusters C

1

, . . . , C
k

,
and define the random variables X

1

, . . . , X
s

2 [k] which indicates cluster membership of the ith
draw. Define the estimators ĉ

j

=

P
n

i=1

1[X
i

= j], so that E[ ĉj
s

] = |C
j

|/n. In both the cases, of
sampling with and without replacement, we can apply Hoeffding’s inequality and union bound
over the cluster C

i

. Technically, in the case of sampling without replacement we must apply
a bound due to Serfling [152], but it is no worse than Hoeffding’s inequality for independent
random variables. We obtain:

8j.P
✓
|1
s
ĉ
j

� |C
j

|
n

| > ✏

◆
 2k exp{�2s✏2}
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Using Lemma 3.6, and a union bound over the events S
i

, and inverting the concentration inequal-
ity, we have that with probability 1� �

1

, for all splits S
i

and cluster C
j

:

����
1

s
ĉ
j

� |C
j

|
|S

i

|
���� 

r
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where |S
i

| is the total number of objects to be clustered at split S
i

. Using the fact that the
hierarchy has balance factor ⌘, which holds here since we are conditioning on successful recovery
of the parent cluster at each step, we obtain:
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and the modified balance factor ⌘̂ is the ratio of these two quantities. Setting �
1

= 4n exp{ �s

2(1+⌘)

2

}
gives that ⌘̂  2⌘ + 1 = O(1) so that the event S

i

does not hold, across all splits S
i

. This is the
first term in Equation 3.1, and if s meets the lower bound in the theorem, we have that �

1

= o(1)
as needed.

The Clustering Phase

In the clustering phase, we simply need to add up the probabilities of failure for all execu-
tions of the algorithm A, conditioned on the fact that the subsampling phase for this split
yielded a constant balance factor. By assumption A fails on an input of size s with probabil-
ity O(skc

1

exp(�s)). With a union bound across all splits, the probability of any execution of
A failing is O(

nsc

1

k�1

k exp(�s)) = O(n2c
1

exp(�s)) (where we used Lemma 3.6). This is the
second term in the bound in Equation 3.1 and as long as s = !(log n), this failure probability is
o(1).

The Averaging Phase

Here our goal is to show that as long as subsampling and the subroutine clustering algorithm
succeeded, then the averaging phase will also succeed with high probability. The guarantees for
the averaging phase follow from assumption K2. In order to ensure that we place every object in
its correct cluster, we require that:
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for all x
i

2 C
j

, for all j0 6= j and across all splits. Here, we say that ˆC
j

= {x
j
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}\ {x
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2 S}
and ĉ
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| for all j. By assumption K2 and a union bound, we have that:
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For the within cluster similarities we union bounded over each of the C
⌘

log n levels, because
each object belongs to only one cluster per level. For between cluster similarities, we union
bounded over the C

⌘

log n levels and the k � 1  k clusters that we will compare to for each
object x

i

. Both equations hold with probability 1 � �
3

, because we used �
3

/2 as the individual
probability of failure. Note also that we replace M

j

in assumption K2 with the sets ˆC
j

and ˆC
j

0 ;
because those sets are chosen uniformly at random, we can make this replacement.

Replacing ĉ
j

and ĉ
j

0 both with the lower bound on the subsampled cluster sizes, arising from
the bound on ⌘̂, and observing that if the lower bound for the first expression is larger than the
upper bound for the second expression, we will make no mistakes at all splits of the hierarchy,
we obtain the following lower bound on �, defined in assumption K1:

� > 2�

r
(1 + ⌘)

s
(log(C
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kn) + log log n+ log(4/�
3

)) (3.3)

Solving this equation for �
3

gives:

�  4C
⌘

nk log n exp

⇢ ��2s
4�2

(1 + ⌘)

�
. (3.4)

This is the final term in Equation 3.1.

Proof of R1 and R2

The measurement complexity and running time are straightforward calculations. At each level
of the hierarchy we obtain at most ns similarities and there are at most O(log n) levels of the
hierarchy, so that the total measurement complexity is O(ns log n). As for the running time, we
only ever call A on problems of size s, and there are at most n such clustering problems which
gives the first term in the running time. The second term is the total running time for all averaging

phases across the hierarchy, which at each level takes ns time. B

3.4.2 Proof of Theorem 3.2

Theorem 3.2 is almost a direct application of Theorem 3.1. We must first verify that the noisy
CBM family satisfies the assumption K1, K2, and that Algorithm 5 satisfies something close to
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assumption A1. In the noisy CBM, since, in expectation, the within cluster similarities are at least
� larger than the between cluster similarities, assumption K1 is satisfied. Assumption K2 is also
satisfied with �2 exactly corresponding to the noise variance of the subgaussian perturbation, and
this follows from the fact that subgaussian random variables enjoy exponential concentration.

To check that an assumption of A1-type is satisfied, we will have to reproduce some of the proof
of Balakrishnan et al. [16]. All of the facts stated here without proof are from [16]. First, Lemma
7 in [16] characterizes the spectral properties of the Laplacian of the constant block matrix A,
without perturbation. If the eigenvalues of L

A

are �
1

 �
2

 . . .�
n

and the eigenvectors are
v(1), . . . , v(n), then they show:

1. v(1) = 1p
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= 0.
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is the similarity between objects

that are separated at the first split of the hierarchy. Moreover, the sign pattern of v(2) reveals
the coarsest partition of the clustering that generates A.
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Analysis of the perturbation matrix reveals the its Laplacian has spectral norm bounded by:
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2 log n+ 2 log

4

�
,

with probability at least 1 � �. Equipped with the spectral properties and the bound on the
perturbation, we can apply the Davis-Kahan theorem [70]. Let L

W

be the Laplacian matrix of W
and denote the eigenvalues µ

1

 µ
2

 . . .  µ
n

and the associated eigenvectors u(1), . . . , u(n).
The Davis-Kahan theorem states that:
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|. This bound shows that the eigenvectors of L
W

are close to the
eigenvectors of L

A

, which we know reveal the cluster structure.

However, a more refined bound is possible. Let k = u(2)�v(2). We will proceed to bound kkk1,
which will give us more precise control on the eigenvector deviation. Some algebra shows that:
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The term T
2

is bounded by:
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These two bounds hold jointly with probability at least 1� �.
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v(2) is a subgaussian with scale factor �. Taking a union bound
across all i and using a standard sub-gaussian tail bound, we have that:

T
3

 4�
p
⌘ log(2n/�)

with probability at least 1� �.
For T

4

, we have T
4

 |R
i

k|  kR
i

k
2

kkk
2

, and kR
i

k
2

 kRk
2

, so for n large enough under the
1� � event used to bound T

1

, we have:

kR
i

k
2

 C�
p
n,

for some absolute constant C. This gives:
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This gives:

T
5

�
����
n�

1 + ⌘
� 2kD

R

k
2

� kRk
2

���� ,

provided that the expression inside the absolute value is positive. We will now show this is indeed
the case. Under the same 1� � probability event used to bound T
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, we have that:
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so provided that �  �
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Combining all of the bounds, we have that with probability at least 1� 2�:
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The algorithm succeeds if kkk1 
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then the algorithm succeeds with probability at least 1� �, where c is some universal constant.

Suppressing dependence on ⌘ and rearranging to solve for �, we have:
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which meets assumption A1 provided that �2/� = ⌦(1). This is true since �2  �, which means
that �p/�p is also ⌦(1) for any p � 1. We actually use this bound directly to obtain the second

term in Equation 3.1, and this allows us to obtain a guarantee for all values of � and, �. B

3.4.3 Proof of Theorem 3.3

The lower bound will be based on an adversarial construction. Let n and m be powers of two
with n � m. We will consider a perfectly balanced binary hierarchy and say that the clusters at
level l all have cluster size n/2l. This means that l = 0 corresponds to the cluster containing all
of the objects and at the bottom of the hierarchy and the largest value of l = log

2

(n/m). The
similarity between two objects grouped at a level l, but not grouped at level l+1 will be �

l

, which
is fixed and known to the algorithm.

Each time the learner makes a measurement, the adversary will respond with a value that is
consistent with all existing measurements, but that keeps the number of consistent hierarchi-
cal clusterings as large as possible. The goal for the learner is to whittle down the size of the
consistent set until there is just a single consistent hypothesis, and as soon as this happens the
learner has successfully recovered the clustering. The goal for the adversary is to provide as
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little information as possible to the learner at each round, so that the learner must make many
measurements before she is confident about the clustering.

For each query, the adversary responds with one of {�
i

}l
i=1

, so there are l possible choices. If
the current size of the consistent set is S, then by the pigeon-hole principle, there must exist a
choice of response by the adversary for which the size of the subsequent consistent set is at least
S/l. Therefore, after T rounds, the adversary can ensure that the size of the consistent set has
reduced multiplicatively by no more than lT . If the size of the consistent set is initially S

0

(we
will compute this size shortly), a necessary condition for the learner’s success is:

S
0

lT
 1

We now compute the number of hierarchical clusterings that extend l levels. We start by consid-
ering all n! permutations on n objects, and aim to count the number of permutations that induce
the same hierarchical clustering. Let T (n) be the number of permutations that induce the same
hierarchical clustering, where the smallest clusters have size m. This means that T (m) = m!.
We compute T (n) recursively: at the top level, we can permute the two clusters and then use any
of the permutations on the two sub-clusters, leading to the recurrence T (n) = 2T (n/2)2, with
the base case T (m) = m!. This recurrence solves to T (n) = 2

n/m�1

(m!)

n/m, so that the number
of hierarchical clusterings with smallest cluster size m is:
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Using the bound (n/e)n
p
2⇡n  n!  nn which follows from Stirling’s approximation, the

necessary condition is:
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B

3.4.4 Proof of Proposition 3.4

The algorithm we will use is the following:

1. Pick an object x
i

2. Take the n/2 objects x
j

with the largest K(x
i

, x
j

) values and place them in a cluster C
1

.
Place the remaining objects in a cluster C

2

.
3. Recursively partition C

1

and C
2

.
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Under the assumption that C? is a balanced binary hierarchy, and under assumptions K1 and K2,
this algorithm correctly recovers the clustering. This is true because between cluster similarities
are strictly smaller than within cluster similarities, so every partitioning step is exact.

To recover a cluster of size s, we use exactly s similarities. Therefore, to recover all clusters up

to size m, we use n log(n/m) similarities, proving the theorem. B

3.4.5 Proof of Theorem 3.5

For the first claim, by Theorem 5.1, we must lower bound the quantity W (H,↵). We interpret
H as a collection of vectors defined by vC = vec(M [C]) for each C 2 H. We must lower bound:

W (H,↵) = max

C2H

X

C0 6=C
exp

�kvC � vC0k2
2

/↵
�

When n and m are both powers of two, a subset of H is the set of all perfectly balanced binary
hierarchical clusterings with minimum cluster size m. Let C

0

be one of these models. Consider
perturbing C

0

by taking an object and swapping that object with another one in the adjacent clus-
ter at the deepest level of the hierarchy. There are nm/2 such perturbations and any perturbation
C has kvC

0

� vCk2
2

= �2(8m� 4). This gives the lower bound of:

W (H,↵) � nm

2

exp

✓
�2

↵
(8m� 4)

◆

By Theorem 5.1, if W (H, 1) � 3, then the minimax risk is bounded from above by 1/2. Apply-
ing our lower bound and solving for � proves the first part of the result.

For the second claim, if we certify that the uniform sampling strategy minimizes W (H,↵, B)

under the budget constraint, then we can immediately apply Theorem 5.5. We will use Proposi-
tion 5.6 to achieve this.

Focusing only on the set of perfectly balanced binary hierarchical clusterings with minimum
cluster size m, which we call H0, it is easy to see that when ˆB is uniform, every one of these
hypotheses achieves the maximum in the definition of W (H0,↵, B). Moreover, notice that for
every pair of pairs objects {a, b}, {a0, b0}, there is a bijection p over H based on swapping a with
a0 and b with b0 in the hierarchy such that for any hypothesis vC , we have vC(a, b) = v

p(C)(a0, b0).
This claim is fairly easy to see. If in C, a and b are clustered at some level l, then by swapping a
with a0 and b with b0 to form p(C), a0 and b0 are clustered at level l in p(C) so both terms will be
identical because we are in a constant block model.
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Since p is a bijection, when we take ⇡ to be uniform over the hypotheses, we have:
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This means we may apply Proposition 5.6, which certifies that the uniform sampling minimizes
the function W (H0,↵, B) under budget constraint.

Equipped with this fact, we can reproduce the calculation above but with B
i

= ⌧/
�
n

2

�
, giving:
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3.5 Discussion

In this chapter, we developed several interactive algorithms for hierarchical clustering. These
algorithms have strong computational and statistical guarantees, and in the case of spectral clus-
tering, provably outperform all non-interactive approaches.

This chapter supports the main claim of this thesis: that interactivity leads to improvements in
computational and statistical performance, particularly when datasets exhibit non-uniformity. In
this chapter non-uniformity is measured in terms of the sizes of the clusters to be recovered. Our
interactive clustering approach is particularly powerful when one must recover large clusters at
the top levels of the hierarchy, and small clusters deeper in the hierarchy. In this case, the in-
teractive algorithms developed here significantly improve on non-interactive approaches in both
computational and statistical efficiency.
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Chapter 4

Interactive Latent Tree Metric Learning

Knowledge of a network’s topology and internal characteristics such as delay times and losses is
crucial to maintaining seamless operation of network services. Yet typical networks of interest
are incredibly large and decentralized so that these global properties are not directly available,
but rather must be inferred from a small number of indirect measurements. Network tomogra-
phy [45, 167] is a promising approach that aims to gather such knowledge using only end-to-end
measurements between nodes at the periphery of a network with limited cooperation from core
routers. The design of algorithms that reliably and accurately recover network characteristics
from these measurements is an important research direction.

Most current methods focus on single source network tomography; they use similarity of delay
or similarity of loss measurements from a single source to multiple nodes, caused by shared path
segments, to infer a tree topology between the source and end nodes. The assumption of a tree
topology is justified under the premise of shortest path routing from the source to each end node.
These procedures either rely on infrequently deployed multicast probes ([33, 79, 80, 81]) or use
a series of back-to-back, carefully coordinated, unicast probes ([56, 82, 86, 135, 166]), which
makes the method sensitive to packet re-orderings and asynchrony between end nodes. These
issues limit the applicability of single source tomography methods.

Multiple source network tomography is an alternative approach that uses measurements between
pairs of end nodes that form an additive metric on a graph. Several network measures such as
end-to-end delay, loss, or hop counts between pairs of end nodes form an (approximate) additive
metric, as a path measurement is the sum of the measure along links constituting the path. It is
possible to learn such metrics using light-weight measurement such as hop counts extracted from
packet headers [84] or pings. If the given measurements form an additive metric on an acyclic
or tree graph, a variety of methods can be used to reconstruct the underlying structure [108, 135,
137]. However, typically, the underlying graph is not an exact tree as peering links between
different network providers introduce cycles and violate the tree assumption, again limiting the
effect of existing methods.

Given the size and complexity of the Internet, the practicality of any network tomography al-
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gorithm should be evaluated not only by its noise tolerance and robustness to violations of any
modeling assumptions, but also by its measurement or probing complexity (the number of mea-
surements/probes needed as a function of the number of end hosts in the network). State-of-the-
art methods for both single- and multi-source network tomography typically suffer in at least
one of these directions. Many methods do not optimize and/or provide rigorous guarantees on
the number of measurements needed to recover the underlying graph structure, while others are
not guaranteed to be robust to noise in these measurements. Moreover, to the best of our knowl-
edge, no method, with the exception of [7, 142], consider violations of the assumption that the
underlying topology is a tree. In this chapter, we address all of these deficiencies.

Unfortunately, additive metrics can be unidentifiable given just pairwise distance measurements,
and therefore one must impose some structural restrictions. Motivated by recent work [142]
showing that internet latency and bandwidth can be well approximated by path lengths on trees,
our work, much like existing network tomography results, is grounded in a tree metric assump-
tion. However, we introduce two models to capture violations of this assumption: (a) an additive
noise model, where all measurements are corrupted by additive subgaussian noise, resulting in
small deviations from the tree metric, and (b) a persistent noise model in which a fraction of the
measurements are arbitrarily corrupted. The persistent noise model also captures the effects of
missing measurements due to dropped packets or unresponsive nodes. Even under these noise
models, our algorithms have strong guarantees about correctness and measurement complexity.

Specifically, we present two algorithms that use interactively selected light-weight probes to
construct a weighted tree whose path lengths provide a faithful representation of the pairwise
measurements between end hosts in the network. While the additional nodes in the resulting
tree need not correspond to hidden network elements, such a representation enables distance ap-
proximations between unmeasured hosts, closest neighbor/server selection, and topology-aware
clustering all of which can improve performance of network services.

Our contributions can be summarized as follows:

1. We present algorithms for the multi-source network tomography problem that improve
on existing work in at least one of two regards: our algorithms have strong correctness
guarantees in the presence of noisy measurements, which can capture violations of the
tree-metric assumption, and, by intelligent use of light-weight probes, they come with
bounds on probing/measurement complexity.

2. Our first algorithm addresses the additive noise model. It uses O(pl log2 p) pairwise mea-
surements in the presence of noise and O(pl log p) measurements in the absence of noise,
where p is the number of end hosts in the network and l is the maximum degree of any
node, to construct a tree that accurately reflects the measurements. As our guarantees hold
even for highly unbalanced tree structures, this improves on existing work [86, 135] that
requires balanced-ness restrictions.

3. Under the persistent noise model, our second algorithm uses O(pl log2 p) pairwise mea-
surements to construct a tree approximation, even when a fixed fraction of the measure-
ments are arbitrarily corrupted. Robustness to persistent noise, however, comes at the cost
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of requiring some balanced-ness of the underlying tree.

This chapter also lends evidence to the three overarching themes of this thesis. While we will
not fully characterize non-interactive approaches for these problems, we will see that our inter-
active procedures are statistically and computationally efficient in comparison with naı̈ve non-
interactive procedures. We will also see that uniformity, measured by the degree of the underly-
ing tree affects the statistical efficiency, so that our interactive algorithms are particularly suited
for non-uniform (low-degree) problems.

This chapter is organized as follows. Section 4.1 discusses related work and comparisons to
our algorithms. We provide background definitions and formally specify the multi-source to-
mography problem in Section 4.2. Our first algorithm that uses selective pairwise measurements
to recover an unrooted, unbalanced tree topology is presented in Section 4.3.1, along with an
analysis of its measurement complexity and tolerance to additive noise corrupting the measure-
ments. In Section 4.3.2, we present our main algorithm, RISING (Robust Identification using
Selective Information of Network Graphs) and analyze its robustness to persistent noise as well
as its measurement complexity. We validate the proposed algorithms using simulations as well
as real Internet measurements from the King [98] and IPlane datasets [129] in Section 4.4 and
provide proofs in Section 4.5. We conclude in Section 4.6.

4.1 Related Work

Initial work towards mapping the Internet was based on injecting TTL (Time-to-Live)-limited
probe packets called traceroutes that record the exact path traversed by the packet [73, 159].
Since traceroute is based on augmenting Time-To-Live information in packets, traceroute-
based tomography approaches are inconsistent when there are several paths between two net-
work elements. Moreover, anonymous routers [171] and router aliases [99] do not augment
packet headers, and firewalls as well as network address translation (NAT) boxes simply block
traceroute packets, posing significant challenges to traceroute-based tomography.

Among the various algorithms for single-source tomography, two recent methods are particularly
relevant to our work: the DFS-ordering algorithm of Eriksson et al. [86] and the work of Ni et
al. [135]. The first provably uses O(pl log p) probes to recover a balanced l-ary tree topology;
however, the authors make no claims about the correctness of the algorithm in the presence of
noisy measurements. Ni et al. present the Sequential Logical Topology (SLT) algorithm, that
uses O(pl log p) (O(pl log2 p) under additive noise) probes to recover balanced l-ary trees while
also guaranteeing correct recovery of the topology when measurements are corrupted by additive
noise. Our first algorithm improves on the work of Ni et al. by relaxing the balanced-ness
assumption while maintaining the same measurement complexity.

In multi-source tomography, a number of algorithms [61, 85, 90] find Euclidean or non-Euclidean
embeddings that accurately reflect the measurements. While some of these algorithms have
strong measurement complexity guarantees [85], they do not capture the inherent hierarchi-
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cal structure of the network and thus may be less useful than algorithms that recover tree or
more intuitive models. In addition to the embedding-based algorithms, the work of Rabbat and
Nowak [140] casts the multi-source tomography problem as a set of statistical hypothesis test
that differentiates topological structure between two senders and two receivers. While their ap-
proach is algorithmically more straightforward, they only identify the presence of a shared link
between the senders and the receivers and cannot distinguish all possible topological configura-
tions between four end hosts as we can.

If the measurements form an additive tree metric, then a host of algorithms could be used to
build a tree representation [108, 137, 145], some coming with measurement complexity bounds.
However, the tree metric assumption does not hold in practice, and as shown in [142], network
measurements such as latency and bandwidth only approximate additive tree metrics. It is conse-
quently important to design algorithms that are robust to violations of the tree metric properties.

Sequoia [142] is one algorithm designed for this purpose. Unfortunately, it comes with no guar-
antees on correctness in the presence of these violations, and while it seems to use only a limited
number of probes in practice, it lacks measurement complexity bounds. In this paper, we build
on this line of work by designing an algorithm with theoretical guarantees on correctness and
measurement complexity. Another method that addresses more general graph structures, beyond
trees, was proposed recently in [7]. However, this method also does not optimize the measure-
ment complexity.

Our work, and network tomography in general, have strong connections to the task of learning
the structure of latent variable graphical models and to problems in phylogenetic inference. For
example, in [137] and [54], algorithms are proposed to learn tree-structured graphical models
using pairwise empirical correlations obtained from measurements of variables associated with
leaf nodes. Under this setup, the correlations form an exact, rather than approximate, tree metric.
Moreover, due to the different measurement model, this work does not explicitly optimize the
number of pairwise measurements used. Our first algorithm is indeed based on the work of Pearl
and Tarsi [137] and hence we call it PEARLRECONSTRUCT.

In phylogenetics, the task of learning an evolutionary tree using genetic sequence data from
several extant species is closely related to the single-source tomography problem. Several algo-
rithms, such as the neighbor-joining algorithm [94, 135, 151] have been applied to both problems.
Also see [33], [68], and [88] for more details. To the best of our knowledge, the algorithms we
propose are novel and do not exist in the phylogenetics literature.

4.2 Background

Let X , {x
i

}p
i=1

denote the end hosts in a network and let d : X ⇥ X ! R+ be a function
representing the true distances between the nodes, so that d(x

i

, x
j

) is the distance, as measured
in the network, between the hosts x

i

and x
j

.
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Figure 4.1: Possible structures for four leaves in a tree. If d(w, x)+d(y, z) < d(w, y)+d(x, z) =
d(w, z) + d(x, y) then structure and labeling is that of (a). If d(w, x) + d(y, z) = d(w, y) +
d(x, z) = d(w, z) + d(x, y) then structure is a star (b).

Our work focuses on distance functions d that form approximate additive tree metrics. Specif-
ically, let T = (V , E , c) be a weighted tree with vertices V , edges E and weights c, for which
X is the set of leaves. To avoid identifiability issues, our focus will be on minimal trees, for
which each internal node has degree � 3 and each edge has strictly positive weight. An additive
tree metric on X is a function dT such that dT (xi

, x
j

) , P
(xk,xl)2Path(xi,xj)

c(x
k

, x
l

), that is the
distance between two points is the sum of the edge weights along the unique path between them.
A useful property of additive tree metrics is the four-point condition:
Definition 4.1. A metric (X , d) satisfies the four-point condition (4PC) if for any set of points
w, x, y, z 2 X ordered such that d(w, x) + d(y, z)  d(w, y) + d(x, z)  d(w, z) + d(x, y),
d(w, y) + d(x, z) = d(w, z) + d(x, y).

The 4PC is related to the quartet test, a common technique for resolving tree structures (Indeed,
there are a host of quartet-based algorithms for phylogenetic inference, for example [143]). The
quartet test is used to identify the structure between any four leaves in a tree using only the
pairwise distances between those leaves. It is easy to see that any four leaves either form a
structure like that in Figure 4.1(a) or a star (Figure 4.1(b)), and using the 4PC we can identify not
only which structure but also the correct labeling of the leaves (See Figure 4.1 for more details).

Any metric that satisfies the four-point condition is a tree metric for some tree. Unfortunately,
latency and hop counts in real networks do not exactly fit into this framework, but only approxi-
mate tree metrics [142]. One characterization of this approximation is the 4PC-✏ condition which
requires d(w, z) + d(x, y)  d(w, y) + d(x, z) + 2✏min{d(w, x), d(y, z)} for some parameter ✏
instead of the equality in Definition 4.1. Metrics for which ✏ values are low can be well approx-
imated by tree metrics, and empirical studies showing that real network measurements satisfy
4PC-✏ for small values of ✏ motivates the use of this model.

In this work, we take a more statistical approach and instead assume that d(x
i

, x
j

) = dT (xi

, x
j

)+

g(x
i

, x
j

) where the function g models the networks deviations from a tree metric. This approach
allows us to not only formally state the multi-source network tomography problem but also to
make rigorous guarantees about the performance of our algorithms. We focus on two models for
these deviations:

1. Additive Noise Model – In this model, g(x
i

, x
j

) is drawn from a subgaussian with �2 as
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Figure 4.2: CDFs of ✏ values in the 4PC-✏ condition for two real world datasets (King [98]
and IPlane datasets [129]) along with a dataset of points drawn uniformly from the surface of a
sphere, where geodesic distance defines the metric.

a scale factor1. The small perturbation model studied in single source network tomogra-
phy (See for example [135]) is similar to this as subgaussian noise is bounded, with high
probability, by a small constant (depending on �2). This model captures the inherent ran-
domness in certain types of measurements, such as latencies. Under this formulation we
allow each measurement to be observed several (n) times.

2. Persistent Noise Model – Here g(x
i

, x
j

) = 0 with probability q, independent of all other
x
i

and x
j

, and with probability 1 � q, g(x
i

, x
j

) is arbitrary (or adversarially) chosen. We
believe this is a reasonable model of how the measurements do not exactly form a tree
metric, due to violations caused by peering links, unresponsive nodes or missing measure-
ments. To more accurately model violations of tree metric assumptions, multiple request
for a measurement all reveal the same (possibly incorrect) value, so we only obtain one
sample of each measurement. To the best of our knowledge, there are no other efforts to
study this noise model.

While [142] capitalized on the fact that ⇠ 80% of the quartets satisfy 4PC with a small pertur-
bation ✏, we also note that⇠ 20% of the quartets do not satisfy the 4PC even with ✏ = 1, which
corresponds to triangle inequality violations (See Figure 4.2 where we plot the CDF of ✏ values
for two real-world datasets). We attempt to address both of these phenomena with our two noise
models: additive noise to capture the small deviations from 4PC and persistent noise to capture
the larger perturbations. In this chapter, we addresses these two types of noise separately, but
note that our second algorithm can be modified to handle both types of noise simultaneously.

We are now prepared to formally specify our problem:
Problem 4.1. Given a noisy metric space (X , d) equipped with a noisy metric d = dT + g for
some tree T , recover T and dT while minimizing the number of measurements of d.

In this chapter, we develop algorithms for this problem under the assumption that g corresponds
to one of the models above. We first define several quantities that appear in the sequel. For any
tree T , let lvs(T ) denote the set of leaf nodes of T and let deg(T ) denote the maximum degree

1A random variable X is subgaussian with scale factor �2 if P(exp(tX))  exp(�2t2/2). This family encom-
passes both gaussian and bounded random variables.
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Algorithm 6 PEARLRECONSTRUCT(X , d, �)
Initialize T

3

as a star tree on x
1

, x
2

, x
3

for i = 4 . . . p do
T
i

= PearlAdd(x
i

, T
i�1

, d, �)
end for
Return T

p

of the tree. For convenience will we define l , deg(T ).

For any three nodes x, y, and z in a tree, let ancestor(x, y, z) be the unique node that is the
shared common ancestor of x, y and z. This node is the unique point along which the three paths
between all pairs of x, y, and z intersect and distances to this point can be computed by (where
a = ancestor(x, y, z)):

dT (x, a) ,
1

2

(dT (x, y) + dT (x, z)� dT (y, z)) (4.1)

To avoid propagation of additive noise in ancestor computations, we only use distances between
true leaf nodes (nodes in X ). To compute the ancestor and associated distances between three
nodes x, y, z, some of which may not be leaves, we use a surrogate leaf node for each non-leaf in
the computation. A surrogate leaf node for x is one for which x is on the path between that leaf
and both y and z. The restriction to minimal trees guarantees existence of surrogate leaf nodes.

4.3 Algorithms

We now describe two algorithms for multi-source network tomography and present guarantees on
correctness and measurement complexity. Our first algorithm, PEARLRECONSTRUCT addresses
the additive noise model while our second, RISING addresses the persistent model.

4.3.1 Additive Noise

The idea behind our first algorithm is to construct the tree T by iteratively attaching the leaves.
To add leaf x

i

, we perform an intelligent search to find a pair of nodes x
j

, x
k

such that the
distance between x

i

and ancestor(x
i

, x
j

, x
k

) is minimized. This information, along with the fact
that x

i

is not in the same subtree as either x
j

or x
k

(which we also determine), tell us how to add
x
i

to the tree.

Our search is intelligent in that we choose x
j

and x
k

to rule out large portions of the tree at every
step. Specifically, by choosing a point with fairly balanced subtrees (known as the pearl point),
we can determine which of these subtrees x

i

belongs to and focus our search to a subtree that
is a fraction of the original size, using a constant number of measurements. Formally, for any
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Algorithm 7 PEARLADD(x
i

, T
i�1

, d, �)
T
c

= T
i�1

while |lvs(T
c

)| > 2 do
Choose a subtree T

out

such that:
|lvs(Tc)|

deg(Tc)+1

< |lvs(T
c

) \ lvs(T
out

)| < |lvs(Tc)|deg(Tc)

deg(Tc)+1

.
r  parent of T

out

in T
c

Let T
sub

6= T
out

be any other subtree of T
c

rooted at r and choose x
k

2 lvs(T
sub

), x
j

2
lvs(T

out

).
y  ancestor(x

i

, x
j

, x
k

), compute d(x
i

, y), d(x
j

, y), and d(x
k

, y), using surrogates.
If d(x

j

, y) + �/2 < d(x
j

, r), then T
c

 T
out

[ {r}
If d(x

k

, y) + �/2 < d(x
k

, r), then T
c

 T
sub

[ {r}
Otherwise T

c

 T
c

\ {T
sub

[ T
out

}
end while
if |T

c

| = 1 then
Attach x

i

to T
c

with edge length d(x
i

, y).
else

T
c

has two nodes r and r0. Choose leaves x
k

and x
j

such that r is on the path between x
k

and r0, and r0 is on the path between x
j

and r.
y  ancestor(x

i

, x
k

, x
j

).
If |d(x

k

, y)� d(x
k

, r)| < �/2, then attach x
i

to r.
If |d(x

j

, y)� d(x
j

, r0)| < �/2, then attach x
i

to r0.
Otherwise, insert y between r and r0 (with edge weights d(x

k

, y)� d(x
k

, r) and d(x
j

, y)�
d(x

j

, r0)) and attach x
i

to y with edge weight d(x
i

, y).
end if
Return T

i�1

updated to include x
i

.

directed instance of a tree T , the pearl point is the internal node in a tree for which the number of
leaves below that node is between |lvs(T )|/(deg(T )+1) and |lvs(T )|deg(T )/(deg(T )+1). As
we show, using the pearl point results in a strong upper bound on the number of measurements
used while ensuring correctness of the algorithm. As the algorithm carefully chooses which
pairwise distances to query, our algorithm is interactive.

PEARLRECONSTRUCT is related to the algorithm in [137], the Sequential Logical Topology
(SLT) algorithm [135], and the Sequoia algorithm [142]. Our search parallels that of [137],
but by using triplet tests rather than quartet tests and by incorporating slack into our search,
PEARLRECONSTRUCT is robust to additive noise while their algorithm is not. On the other
hand, the SLT algorithm is robust to noise, but they do not begin their search at the pearl point of
the tree, and thus their measurement complexity guarantees only hold for balanced trees, while
our guarantees are more general. The Sequoia algorithm also adopts some of the same ideas, but
since their search is heuristic, they do not provide bounds on the number of measurements used.

The algorithm involves a parameter � that is a lower bound on the edge weights in the true tree
T . This parameter is critical for identifying two nodes separated by a short edge in the presence
of noise and is a robust version of the minimality condition. Similar parameters have been used
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in related results [135].

Pseudocode for PEARLRECONSTRUCT is shown in Algorithms 6 and 7. Our main correctness
guarantee is the following; proof of the result is deferred to Section 4.5.
Theorem 4.1. Let (X , d) be a noisy metric space with |X | = p where d = dT + g for a tree T
with minimum edge length � � and consider the additive noise model with scale factor at most
�2. Fix any � 2 (0, 1). If, for each pairwise distance queried, PEARLRECONSTRUCT uses the
average over n samples and

n > 18

�2

�2
log(2p2/�), (4.2)

then with probability at least 1� �, PEARLRECONSTRUCT successfully recovers T and the edge
weights in the tree with at most �/2 additive error.

This theorem is a correctness guarantee for PEARLRECONSTRUCT. In the absence of noise, the
algorithm always succeeds in recovering the tree topology T along with all pairwise distances in
the metric dT . In the additive noise model, the algorithm fails with some probability �, but with
the remaining probability it recovers the tree topology and the edge weights in the tree with error
at most �/2. This implies accurate recovery of all of the pairwise distances in the tree, where the
level of accuracy for any distance is linear in the number of edges between the two nodes.

It remains to bound the total number of measurements used by the algorithm. The following
theorem upper bounds this quantity.
Theorem 4.2. PEARLRECONSTRUCT uses O(pl �

2

�

2

log

2 p) pairwise measurements.

For constant-degree tree metrics, we see that the algorithm uses a slightly super-linear number of
measurements. This is a polynomial improvement over a naı̈ve algorithm that would repeatedly
query for all pairwise distances and average away noise. This naı̈ve algorithm would use ˜O(p2 �

2

�

2

)

measurements, which is quadratic in the network size. By making measurements in an interactive
fashion, we obtain a significantly reduced sampling requirement.

Note that this bound also leads to a bound on the running time of the algorithm. For each node
we insert, we compute the pearl point and perform quartet tests at most O(l log(p)) times. Since
the pearl point can be computed in linear time, the algorithm runs in O(p2lpolylog(p)) time.

4.3.2 Persistent Noise

For the persistent noise model, we propose a divisive algorithm; it recursively partitions the
leaves into groups corresponding to subtrees of T . Each partitioning step identifies one internal
node in the tree, and by repeated applications of our algorithm, we identify all internal nodes that
satisfy certain properties (detailed in Theorem 4.3).

A top-down partitioning algorithm allows us to use voting schemes that are robust to persistent
noise. Specifically, we identify groups of nodes by repeatedly performing quartet or triplet tests
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Algorithm 8 RISING(X , d,m)
Randomly choose M ⇢ X with |M | = m
For x

i

, x
j

2 M , compute s(x
i

, x
j

) = max

xk2M |{x
k

0 2 M : d(x
i

, x
k

) � d(x
j

, x
k

) =

d(x
i

, x
k

0
)� d(x

j

, x
k

0
)}|

Run Single Linkage Clustering using similarity function s to cluster M into C with |C| = 3.
for x

i

2 X \M do
VOTE(x

i

, C, d)
end for
Initialize T with 1 node r
for C 2 C do

T
sub

 SPLIT(C,X \ C, d,m).
Choose clusters C

1

, C
2

2 C \ C
weight(r, root(T

sub

)) EDGELENGTH(C
1

, C
2

, T
sub

, d)
end for
Return T

and deciding on the structure agreed on by the majority. However, to ensure that these groups
are sufficiently large, we require a balancedness condition:
Definition 4.2 (Balance Factor). We say that T has balance factor ⌘ if ⌘ is the smallest number
for which there exists a node r such that for all internal nodes h (including r), with subtrees
T
1

(h), . . . , T
k

(h) directed away from r:

⌘ � max

i

|lvs(T
i

(h))|
min

i

|lvs(T
i

(h))| .

To identify a single internal node r our algorithm randomly samples a subset of the leaves, forms
a clustering of this subset, and then places each remaining leaf into one cluster. After recursively
partitioning each cluster, we compute edge lengths using a voting scheme. In the clustering
phase, we compute a similarity function s on the sampled leaves where s(x

i

, x
j

) is large if the
two leaves belong in the same subtree of T , viewed with r as the root. We partition the sampled
nodes into two clusters in most cases (to find the first split we partition into three). Each of these
clusters is comprised of leaves from one or more subtrees rooted at r, but the leaves from any of
the subtree are contained wholly in one cluster.

Once we have clustered the sampled nodes, we use voting to determine the group assignments
for the remaining nodes. To place a node x

i

, we compute quartet structures (See Figure 4.1)
between x

i

and x
j

, x
k

, x
l

(each from different clusters) and record which node x
i

paired with in
the quartet test. We place x

i

into the cluster that most commonly paired with x
i

.

The computations required to find the initial partition of leaves are slightly different from those
required for subsequent splits. To highlight these differences, we present pseudocode for re-
covering the first partition in Algorithm 8 and for subsequent partitions in Algorithm 9. These
algorithms rely on two subroutines which we show in Algorithms 10 and 11.

Before presenting our theoretical guarantees, we remark that while our results analyze RISING in
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Algorithm 9 SPLIT(S , Y , d,m)
Randomly choose M ⇢ S with |M | = m
For each x

k

2M , draw Z(k) randomly from Y .
For x

i

, x
j

2 M , compute s(x
i

, x
j

) = |{x
k

2 M : d(x
i

, x
k

) � d(x
j

, x
k

) = d(x
i

, x
Z(k)

) �
d(x

j

, x
Z(k)

)}|.
Run Single Linkage Clustering using similarity function s to cluster M into C with |C| = 3.
for x

i

2 S \M do
VOTE(x

i

, C [ {Y}, d)
end for
Initialize T with 1 node r
for C 2 C do

T
sub

 SPLIT(C,Y [ (S \ C), d,m).
Choose C 0 2 C \ C
weight(r, root(T

sub

)) EDGELENGTH(C 0, Y , T
sub

, d)
end for
Return T

Algorithm 10 VOTE(x, C, d)
Let C

1

, C
2

, C
3

2 C
V C

1

, V C
2

, V C
3

 0

for n 2 {1, . . . ,min

C2C |C|} do
Choose x

1

2 C
1

, x
2

2 C
2

, x
3

2 C
3

.
V C

i

 V C
i

+ 1 if x pairs with x
i

w.r.t. the other two.
If x

i

, x
1

, x
2

, x
3

form a star, ignore this vote.
end for
Place x in C

i

where V C
i

= argmax{V C
1

, V C
2

, V C
3

}

the presence of only persistent noise, with slight modifications the algorithm can be made robust
to both persistent and additive noise. The main change would involve incorporating slack into the
quartet tests, much like we have done in PEARLRECONSTRUCT. The analysis for this modified
algorithm would incorporate the techniques used in Theorem 4.1 (specifically concentration of
subgaussian random variables) into our current proofs. However, for clarity of presentation, our
analysis guarantees the correctness of RISING under only persistent noise.
Theorem 4.3. Let (X , d) be a metric where d , dT +g for a tree T with bounded balance factor
⌘ and where g is from the persistent noise model with probability of an uncorrupted entry � q
with q6 > C

⌘,l

. Then with probability � 1 � 1/p, every execution of RISING and SPLIT, with
parameter m, will correctly identify an internal node provided that:

m > c
⌘,l

log(pm)

(q6 � C
⌘,l

)

2

(4.3)

where 1/2  C
⌘,l

< 1, c
⌘,l

are constants depending on ⌘ and l.

This theorem is a correctness guarantee for the RISING algorithm, although the flavor of guaran-
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Algorithm 11 EDGELENGTH(C
1

, C
2

, T
sub

, d)
C

L

 leaves in one subtree of T
sub

C
R

 leaves in another subtree of T
sub

for n 2 {1, . . .min{m, |C
1

|, |C
2

|, |C
L

|, |C
R

|} do
Draw w 2 C

1

, x 2 C
2

, y 2 C
l

, z 2 C
R

Record 1

2

d(w, y) + d(x, z)� d(w, x)� d(y, z)
end for
Return the most frequently occurring recorded value

tee is quite different from that in Theorem 4.1. This theorem ensures that any internal node for
which every subtree has size at least m will be recovered by repeated calls to Algorithm 9. In
the absence of noise, we can choose m to be a function of |S|, the subset of leaves passed into
the SPLIT routine. However, with noise, m must be ⌦(log p) and if S is too small for this, then
S cannot be further resolved, and thus log p limits the recovery resolution.

In Section 4.5, we give a precise characterization of C
⌘,l

, which plays a critical role in RISING’s
robustness to noise. While C

⌘,l

< 1 for all values of ⌘ and l, it grows with these quantities.
Specifically, the minimum value for C

⌘,l

is 1/2, which happens when ⌘ = 1 and l = 2. This
corresponds to a perfectly balanced binary tree, which is the easiest case for the persistent noise
setting.

We now upper bound the number of measurements used by the algorithm:
Theorem 4.4. On trees with bounded balance factor, RISING uses O(pml log p) measurements
where l is the maximum degree of the tree T .

Setting m as in Theorem 4.3, we see that RISING recovers all identifiable internal nodes while
using O(pq�6

log

2

(p)) measurements. Comparing with a naı̈ve, non-interactive algorithm that
obtains all measurements, this is a polynomial improvement in sample complexity, demonstrating
the power of interactivity for this problem. We are not aware of any more sophisticated non-
interactive approaches for this setting.

4.4 Experiments

We perform several experiments on simulated and real-world topologies to assess the validity
of our theoretical results and to demonstrate the performance of our algorithms. We study how
increasing noise affects our algorithms ability to correctly recover the topology and also how the
number of measurements used compares to related algorithms.
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Figure 4.3: Noise Thresholds for PEARLRECONSTRUCT and RISING.
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Figure 4.4: Measurements used as a function of p for PEARLRECONSTRUCT, RISING, DFS
Ordering [86], SLT [135], and Sequoia [142]

4.4.1 Simulations

In simulations, we demonstrate how our algorithms tolerate noise, how this tolerance scales with
p, and how the number of measurements used scales with p. For these experiments, we generate
tree topologies and obtain pairwise distances by computing unweighted path lengths along the
tree to represent hop counts in a network. We then perturb this pairwise distance matrix with
additive or persistent noise and run our algorithms on this perturbed matrix. We assess the
correctness of our algorithms by computing the fraction of quartets for which the structure in the
reference tree matches that in the algorithm’s output.

For RISING, in simulations we always choose m = log

2 |S| (even with noise), which as men-
tioned, satisfies the conditions of Theorem 4.3 in the absence of noise. For our real world exper-
iments, we use m = log p.

Our first experiment studies how PEARLRECONSTRUCT and RISING perform in the presence of
noise. In Figures 4.3(a) and 4.3(b) we plot the fraction of incorrect quartets averaged over 20
trials for PEARLRECONSTRUCT and RISING respectively, as a function of the noise for different
values of p. In Figure 4.3(a) we verify three properties of PEARLRECONSTRUCT: (i) in the
absence of noise, it deterministically recovers the true topology as predicted by Lemma 4.5,
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(ii) as the noise variance increases, PEARLRECONSTRUCT becomes less accurate, (iii) on larger
topologies, PEARLRECONSTRUCT requires lower noise variance. This last property follows
from Equation 4.2 since if n is constant (we took n = 1 for these experiments), we require
�2

= O(

1

log p

) in order to guarantee successful recovery, and this upper bound decreases with p.

For RISING, in Figure 4.3(b), we observe the opposite phenomenon; larger topologies can toler-
ate more persistent noise. This matches our bounds in Theorem 4.3, which allows q to approach
a constant as m, p!1. As before, we also observe that in the absence of noise, we determinis-
tically recover the underlying topology, although we note that we used balanced binary trees for
these experiments. For highly unbalanced trees, we cannot make this deterministic guarantee.

To assess the measurement complexity of our algorithms, we record how many measurements
each algorithm uses as a function of p, in the absence of noise. These plots are shown in Fig-
ure 4.4. As is noticeable in Figure 4.4(a), the measurement complexity for PEARLRECON-
STRUCT appears to be O(p log p). We also show the measurement complexity for the DFS Or-
dering algorithm of Eriksson et al [86] and the Sequential Logical Topology (SLT) algorithm
[135], both of which are single-source tomography methods with provable O(p log p) complex-
ity on balanced trees. The trees used here are randomly generated, and we see that the SLT
algorithm performs worse that PEARLRECONSTRUCT, while DFS Ordering seems to use a con-
stant multiplicative factor fewer measurements.

However, in the worst case, PEARLRECONSTRUCT enjoys considerable advantage over both SLT
and DFS Ordering as can be seen in Figure 4.4(b). In this experiment, we used highly unbalanced
trees and we see that the measurement complexity of both SLT and DFS Ordering scale at O(p2),
while PEARLRECONSTRUCT continues to scale at O(p log p).

In Figure 4.4(c), we compare RISING to the Sequoia algorithm of [142]. While Sequoia comes
with no guarantees about correctness or measurement complexity, it appears to use very few
measurements in practice. RISING on the other hand appears to use a multiplicative factor of
log p more measurements than Sequoia, which we confirmed empirically. However, as we show
in our real world experiments, Sequoia is less robust to noise, even when customized to use
a similar number of measurements as RISING. We also emphasize that RISING comes with
guarantees on correctness in the presence of noise while Sequoia does not.

4.4.2 Real World Experiments

In addition to verifying our theoretical results, we are interested in assessing the practical perfor-
mance of our algorithms on real network tomography datasets. We use two datasets: the King
dataset [98] of pairwise latencies and a dataset of hop counts between PlanetLab [139] hosts
measured using iPlane [129]. We selected a 500-node subset of the 1740-node King dataset. The
iPlane dataset consists of 193 end hosts.

We ran three algorithms, PEARLRECONSTRUCT, RISING, and Sequoia, on both datasets and
plot the distribution of relative error values for each algorithm. Given the constructed tree met-
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Figure 4.5: CDF of relative error on King (a) and iPlane (b) datasets.

Dataset Hosts Total Pearl RISING Sequoia
King 500 125250 8321 43608 42599

iPlane 194 18721 2480 12309 11574

Figure 4.6: Measurements used on real world data sets

ric (X, ˆd) and the true metric (X, d), we measure relative error for each pairwise distance as
| ˆd(xi,xj)�d(xi,xj)|

d(xi,xj)
. This quantity reflects how well the tree metric approximates the true distances

in the network. These plots are shown in Figures 4.5(a) and 4.5(b). We see that on both datasets,
RISING outperforms both Sequoia and PEARLRECONSTRUCT, with substantial improvements
on the King dataset. PEARLRECONSTRUCT performs moderately well on both datasets.

Lastly, we recorded the number of measurements used by the algorithms on the two datasets in
Figure 4.6. Note that Sequoia can be used to build many trees where the recovered pairwise
distances is the median distance across all trees. To ensure a fair comparison, we build several
trees so that Sequoia and RISING use a similar number of measurements. However, even with
several trees, RISING performs better than Sequoia.

4.5 Proofs

4.5.1 Proof of Theorem 4.1

First, we consider the noiseless scenario.
Lemma 4.5. Let (X, d) be a minimal tree metric on T with |X| = p. Then PEARLRECON-
STRUCT on input (X, d) recovers T and d exactly.

Proof. We start with T
3

, the tree on leaves x
1

, x
2

and x
3

. Every minimal tree on 3 leaves has the
same structure as T

3

, so we know this is correct. Moreover, since d(x
i

, y) for i 2 {1, 2, 3} and
y = ancestor(x

1

, x
2

, x
3

) is given by Equation 4.1, the edge weights in T
3

are also correct.
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We now analyze the add procedure, showing that it correctly places x
i

into the tree so that T
i

is the correct minimal tree on x
1

, . . . , x
i

with the correct edge weights. We proceed by case
analysis: for any root r with subtrees T

out

and T
sub

, it must be that either x
i

belongs in T
out

, T
sub

or in T
c

\ {T
sub

[ T
out

}. For any x
k

2 T
sub

, x
j

2 T
out

, if x
i

belongs in T
out

, then it must be the
case that d(x

j

, y) < d(x
j

, r) or else the shared common ancestor between x
i

, x
j

, and x
k

could
not possibly lie in T

out

. Similarly, if x
i

belongs in T
sub

then it must be that d(x
k

, y) < d(x
j

, r).
Finally, if x

i

lies in neither subtree, then ancestor(x
i

, x
j

, x
k

) = r.

In each case, we update T
c

so that it still contains the location where x
i

should be added. Since
we choose T

sub

and T
out

to be non-empty subtrees, the size of T
c

decreases on every iteration, so
the algorithm must eventually exit the loop.

When this happens, |T
c

|  2 and T
c

contains the location of x
i

. If |T
c

| = 1, then the only place
to add x

i

is as a child of the node in T
c

. This only happens if ancestor(x
i

, x
j

, x
k

) = r in the last
iteration of the while loop, so the distance d(x

i

, y) is the correct edge weight for the new edge.

If |T
c

| = 2, then we use two additional leaves to determine how to place x
i

. Case analysis
reveals that our procedure correctly places x

i

into T
c

. Thus, we conclude that the add procedure
correctly update T

i�1

to contain x
i

. By iteratively applying this argument, we arrive at the claim.

B

Turning to the noisy setting, we can no longer deterministically guarantee correct recovery of
T , but instead require a probabilistic analysis. In the algorithm, we choose three nodes x

i

, x
j

and x
k

and compute distances between these nodes and y , ancestor(x
i

, x
j

, x
k

). We need to be
able to correctly determine if y lies between the root r and x

j

, between r and x
k

, or elsewhere
in the tree. We therefore seek to bound | ˆd(x

k

, y) � d(x
k

, y)| and | ˆd(x
j

, y) � d(x
j

, y)| where ˆd
corresponds to our empirical estimate of the distance based on n samples.

To arrive at these bounds, we first derive concentration inequalities for the directly observed
measurements. Specifically, by application of the Subgaussian tail bound and the union bound
we have that with probability � 1� �:

| ˆd(x
i

, x
j

)� d(x
i

, x
j

)| 
r

2�2

log(2p2/�)

n
,

for all leaves x
i

, x
j

, i, j 2 [p]. Using this bound along with Equation 4.1, immediately reveals
that the distance in the estimated tree between any two nodes deviates from the correct distance

by at most 3

2

q
2�

2

log(2p

2

/�)

n

.

In order for the algorithm to work, we need to ensure that we can identify when the ancestor
node y equals the root node r, in spite of the deviations. If:

� > 3

r
2�2

log(2p2/�)

n
, (4.4)
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then with high probability we will not confuse the nodes y and r, since distances to each node

only deviate by half that. Inverting Equation 4.4 yields the bound on n in the theorem. B

4.5.2 Proof of Theorem 4.2

We study the add procedure. By Lemma 1 in [137], we know that for any T
c

there exists a
subtree T

out

for which:

|lvs(T
c

)|
deg(T

c

) + 1

< |lvs(T
c

) \ lvs(T
out

)| < |lvs(T
c

)|deg(T
c

)

deg(T
c

) + 1

Let l
c

= deg(T
c

). The fact that |lvs(T
c

) \ lvs(T
out

)| < |lvs(Tc)|lc
lc+1

means that |lvs(T
out

)| � |lvs(Tc)|
lc+1

.
Writing T i

c

to denote T
c

after i iterations of the loop, we see that no matter how the search
proceeds, |lvs(T i

c

)|  lc
lc+1

|lvs(T i�1

c

)|.
Thus the number of iterations required to place x

i

in T
i�1

is at most log lc+1

lc
(i�1)  2l

c

log(i�1).
This follow since:

log lc+1

lc
(i� 1) =

log(i� 1)

log

⇣
1 +

1

lc

⌘  2l2
c

2l
c

� 1

log(i� 1)  2l
c

log(i� 1)

The first inequality is based on the Taylor expansion log(1+ 1/x) � 1

x

� 1

2x

2

and the second one
holds provided that l

c

� 1, which is always true here. Since each loop iteration uses a constant
number of pairwise distance measurements, l

c

is upper bounded by l the maximum degree of T ,
and we call add at most p times, we see that the measurement complexity is O(pl log p) in the
absence of noise.

Finally, recall from Theorem 4.1 that if n is O(log p) we can guarantee exact recovery of the tree.
We must therefore observe each measurement O(log p) times and including this multiplicative

factor results in the stated bound. B

4.5.3 Proof of Theorem 4.3

We first state and prove several lemmas, and then turn to the task of recovering the splits.
Lemma 4.6 (Sampling). Let T have balance factor ⌘ and maximum degree k. Then in all
iterations of RISING and SPLIT, with probability � 1 � 2

pk

, the sampled subtree of T with leaf
set M has balance factor:

⌘̂  2⌘ + 1,

as long as m � 4(1 + (k � 1)⌘)2 log(pk).
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Proof. In this proof we will simultaneously work with all of the recursive calls of RISING. Since
each call recovers one internal node, and there can be no more than p internal nodes in T , we can
enumerate the calls from 1 to p. Each call operates on a subset of leaf nodes and we will refer to
the tree induced by those leaves as T s for the sth call.

For fixed s, define the random variables Z
ij

, i 2 [m], j 2 [k]2, which takes value 1 if the ith leaf
sampled belongs in T s

j

, the jth subtree of r (the root of T s). Further define ˆT s

j

to be the sampled
version of T s

j

, that is the tree T s

j

restricted to only the leaves in M . Notice that E[Z
ij

] =

|lvs(T s
j )|

|lvs(T s
)|

and that |lvs( ˆT s

j

)| = P
m

i=1

Z
ij

. By Hoeffding’s inequality we have that:

P
✓
| 1
m
|lvs( ˆT s

j

)|� |lvs(T s

j

)|
|lvs(T s

)| > ✏

◆
 2 exp{�2m✏2},

for any single j 2 [k], s 2 [p]. We would like to do this across all calls to SPLIT, and for each sub-
tree in any of the calls. We take a union bound across all internal nodes and all subtrees, and then
rewrite to introduce dependence on the balance factor ⌘, noting that |lvs(T s

(k)

)|  ⌘|lvs(T s

(1)

)| for
any internal node 3. This gives us that:

1

m
|lvs( ˆT s

(1)

)| � |lvs(T s

(1)

)|
|lvs(T s

)| �
r

log(2pk/�
1

)

2m

1

m
|lvs( ˆT s

(k)

)|  ⌘|lvs(T s

(1)

)|
|lvs(T s

)

+

r
log(2pk/�

1

)

2m

Note that since we have established concentration inequalities for all subtrees, the new balance
factor ⌘̂ depends only on the lower bound for the smallest subtree size and the upper bound for
the largest subtree size. Now let m = c log(pk) and set �

1

=

2

pk

. With these settings we have:

1

m
|lvs( ˆT s

(1)

)| � |lvs(T s

(1)

)|
|lvs(T s

)| �
r

1

c
and

1

m
|lvs( ˆT s

(k)

)|  ⌘|lvs(T s

(1)

)|
|lvs(T s

)| +

r
1

c

The new balance factor is the ratio of these two quantities. To find the worst case ⌘̂, we need
to maximize with respect to |lvs(T s

(1)

)|. It is easy to verify that the maximum is achieved at
the smallest possible size for T s

(1)

, and given a balance factor of ⌘, we have that |lvs(T s

(1)

)| �
|lvs(T s

)|
1+(k�1)⌘

, achieved when the remaining subtrees are all of the same size. Plugging in this value
for |lvs(T s

(1)

)| we have:

⌘̂ 
⌘

1+(k�1)⌘

+

q
1

c

1

1+(k�1)⌘

�
q

1

c

2we use [m] to denote {1, . . . ,m}
3we use T s

(1), . . . , T
s
(k) to denote the subtrees of T s in increasing sorted order by number of leaves
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Now as long as c � (1 + (k � 1)⌘)2, this quantity is guaranteed to be positive and if c =

4(1 + (k � 1)⌘)2, then some algebra shows that:

⌘̂  2⌘ + 1

B
Lemma 4.7 (Clustering). Suppose that the probability of an uncorrupted entry q4 > C

⌘̂,k

and:

m > c
⌘̂,k

log(m2/�
2

)

(q4 � C
⌘̂,k

)

(4.5)

for constants C
⌘̂,k

< 1, c
⌘̂,k

that depend on ⌘̂ and the max degree k. Then with probability
� 1 � �

2

, Single Linkage clustering on M using s(x
i

, x
j

) as the similarity between x
i

and x
j

partitions M such that either each subtree is entirely contained in one cluster C 2 C, or if a
subtree is split across clusters, those clusters contain no nodes from other subtrees.
Remark 4.1. While we have suppressed dependence on ⌘̂ in Lemma 4.7, we note that a critical
condition for correctness is that ⌘̂ = O(1). This condition ensures that single linkage clustering
completely groups any individual subtrees of T before merging it with any other subtree and is
required for our algorithms to be robust to noise.

Proof. The proofs for RISING and SPLIT are almost identical. We tailor our proof to the former,
noting where modifications need to be made for the latter.

Our strategy is to lower bound the quantity s(x
i

, x
j

) for any pair of leaves x
i

, x
j

that belong to the
same subtree and to upper bound s(x

i

, x
k

) if x
i

and x
k

do not belong to the same subtree. Under
the conditions on q, we show that this lower bound exceeds the upper bound and this guarantees
that one subtree will be fully contained in any cluster before any two subtrees are merged. This
means that either a subtree is fully contained in a cluster or if it is split across clusters, no nodes
from other subtrees are in these clusters.

To assist in our analysis we use the following notation. As above, we write ˆT
i

to be the ith subtree
of r the root node in the definition of balance factor, restricted to the leaves in M . Let s⇤(x

i

, x
j

)

be the value of s(x
i

, x
j

) with this subsampling but in the absence of any noise in the distances.
Let G

ij

be the group of nodes x
k

that all have the same d(x
i

, x
k

)�d(x
j

, x
k

) value and that achieve
the maximum in the computation of s(x

i

, x
j

). In particular, this means s⇤(x
i

, x
j

) = |G
ij

|. Define
ˆT
(1)

, . . . , ˆT
(k)

to be the subtrees of the subsampling ordered by increasing number of leaves.
Finally define T

min

, P
k�1

i=1

|lvs( ˆT
(i)

)| and A
min

, P
k

i=k�1

|lvs( ˆT
(i)

)|. T
min

is a lower bound on
s⇤(x

i

, x
j

) for x
i

, x
j

in the same subtree and A
min

is an upper bound on m� s⇤(x
i

, x
k

) for x
i

, x
k

in different subtrees.

We now lower bound s(x
i

, x
j

) for x
i

, x
j

in the same subtree. In the presence of noise, any node
x
t

2 G
ij

remains in G
ij

as long as d(x
i

, x
t

) and d(x
j

, x
t

) are not corrupted, which occurs with
probability at least q2. Thus:

E[s(x
i

, x
j

)] � q2s⇤(x
i

, x
j

)
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Since each x
t

contributes to s(x
i

, x
j

) independently and since there are |G
ij

| nodes x
t

, we can
use Hoeffding’s Inequality, coupled with a union bound, to show that with probability � 1� �

c1

:

s(x
i

, x
j

) � q2s⇤(x
i

, x
j

)�m

s
log(m2/�

c1

)

2T
min

, (4.6)

for all pairs i, j that belong in the same subtree. This is our lower bound.

For SPLIT, we analogously define G
ij

, {k : d(x
i

, x
k

)�d(x
j

, x
k

) = d(x
i

, x
Z(k)

)�d(x
j

, x
Z(k)

)}
and we require that four measurements are uncorrupted. The above argument, tailored to this
scenario gives (with probability � 1� �

c1

):

E[s(x
i

, x
j

)] � q4s⇤(x
i

, x
j

) and s(x
i

, x
j

) � q4s⇤(x
i

, x
j

)�m

s
log(m2/�

c1

)

2T
min

For the upper bound, we can see that a node can contribute to s(x
i

, x
k

) if it contributes to
s⇤(x

i

, x
k

) and it uses no corrupted measurements or if it does not contribute to s⇤(x
i

, x
k

) and
it contains a corrupted measurement. For the first case, we will assume pessimistically that all of
the nodes x

t

2 G
ik

contribute to s(x
i

, x
k

). For the latter, we again perform a worst case analysis
where we assume any x

t

/2 G
ij

for which either d(x
i

, x
t

) or d(x
k

, x
t

) are corrupted contributes
to s(x

i

, x
k

). Thus any x
t

contributes with probability 1 � q2. If we write s
2

(x
i

, x
k

) to denote
the number of nodes x

t

/2 G
ij

that could contribute to s(x
i

, x
k

), then by the same techniques as
above, we arrive at the following upper bound:

E[s
2

(x
i

, x
k

)]  (1� q2)(m� s⇤(x
i

, x
k

))

s
2

(x
i

, x
k

)  (1� q2)(m� s⇤(x
i

, x
k

)) +m

s
log(m2/�

c2

)

2A
min

Where the second statement holds with probability � 1� �
c2

.

In order to ensure success of our clustering algorithm, we need the lower bound for s(x
i

, x
k

) to
be larger than the upper bound for s(x

i

, x
k

).

Setting �
2

, �
c1

= �
c2

, we can now bound q as:

q2 � m

m+ s⇤(x
i

, x
j

)� s⇤(x
i

, x
k

)

+

r
1

2

log(m2/�
2

)

⇥
"
s⇤(x

i

, x
j

)

p
1/T

min

+ (m� s⇤(x
i

, x
k

))

p
1/A

min

m+ s⇤(x
i

, x
j

)� s⇤(x
i

, x
k

)

#

For this inequality to hold, we require that s⇤(x
i

, x
j

) � s⇤(x
i

, x
k

), but this is always the case
since s⇤(x

i

, x
j

)� s⇤(x
i

, x
k

) � |lvs( ˆT
(1)

)|, i.e. the size of the smallest subtree.
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To better illustrate the dependence between q and the various parameters of the problem, we
simplify the expression using the following bounds (which are straightforward to verify):

T
min

� m⌘̂

1 + (k � 1)⌘̂
, A

min

� 2m⌘̂

1 + (k � 1)⌘̂
, |lvs( ˆT

(1)

)| � m

1 + (k � 1)⌘̂

Using this bounds we arrive at the following lower bound on q2:

q2 �
1 +

1+

p
2

2

q
log(m

2

/�

2

)(1+(k�1)⌘̂)

m⌘̂

1 +

1

1+(k�1)⌘̂

Specifically, this means that the constant C
⌘̂,k

and c
⌘̂,k

in the lemma are:

C
⌘̂,k

=

1 + (k � 1)⌘̂

2 + (k � 1)⌘̂
and c

⌘̂,k

=

(1 +

p
2)(1 + (k � 1)⌘̂)3/2

2

p
⌘̂(2 + (k � 1)⌘̂)

Plugging in these constants and reorganizing the expression results in Equation 4.5. Both con-
stants depend on both ⌘̂ and k, however notice that C

⌘̂,k

< 1 and both C
⌘̂,k

and C
⌘̂,k

are smaller
for ⌘̂ close to 1. Thus we see that it is easier to cluster more balanced trees.

The analysis for SPLIT is the same, except that we require q4 to be greater than the right hand
side of above lower bound on q2. Since this dependence is worse than the one for RISING, we

use this expression in our result. B
Lemma 4.8 (Voting). Suppose that q6 > C

⌘̂,k

. Then with probability � 1� �
3

the voting phase
of RISING and SPLIT correctly partition the leaves into their subtrees as long as:

m > c
⌘̂,k

log(p/�
3

)

(q6 � C
⌘̂,k

)

2

, (4.7)

for some constants c
⌘̂,k

, C
⌘̂,k

that depends on ⌘̂ and k.

Proof. The voting procedure works by taking one node from each cluster in C and computing
the quartet between those three nodes and the node we are trying to place, x

i

. Suppose that x
i

belongs in cluster C⇤; then it must be the case that C⇤ 2 C or there exists some C 0 2 C such that
C⇤ ⇢ C 0. This latter case can happen if we merge two subtrees in the clustering phase.

Since C always has cardinality 3 in Algorithm 10, when we draw one node from each of the three
clusters one of two things can happen. If we draw a node from C⇤ then in the absence of noise,
this quartet would correctly vote that x

i

belongs in the cluster C 0. If on the other hand, we draw
a node from C 0 \ C⇤, then in the absence of noise this quartet would vote that x

i

forms a star.
Our analysis must consider both of these scenarios.
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Specifically, let Z
i

be the indicator that the ith quartet test correctly voted that x
i

belongs in C 0.
We perform z , | ˆT

(1)

| rounds of voting and by application of a Hoeffding’s Inequality and a
union bound:

P
 
|C⇤|
|C 0| q

6 � 1

z

zX

i=1

Z
i

> ✏

!
 exp{1

c
m✏2}

Z , 1

z

zX

i=1

Z
i

>
|C⇤|
|C 0| q

6 �
r

c log(p/�
3

)

m
,

for each x
i

2 X \M and for some constant c that depends only on on ⌘̂ and k (c = 1+(k�1)⌘̂ �
1/|lvs( ˆT

(1)

)|). We see that with probability �
3

, the fraction of correct votes is bounded from below
as long as m = !(

p
log p) so that the second expression! 0 as p!1.

We will need a similar concentration bound on the number of votes that form a star. Define W
i

to be the indicator that the ith quartet test correctly forms a star. By a similar argument we see
that with probability � 1� �

3

:

W , 1

z

zX

i=1

W
i

� |C 0|� |C⇤|
|C 0| q6 �

r
c log(p/�

3

)

m

for all x
i

2 X \M .

To guarantee that we place x
i

correctly, we will pessimistically assume that every vote not for
C 0 and not for a star will vote for the same C 2 C, C 6= C 0. Thus the fraction of votes for C is
1� Z �W and we require that Z > 1� Z �W . Some algebra shows that this is true if:

q6 >
|C 0|

|C 0|+ |C⇤| + 3

r
c log(p/�

3

)

m

Inverting this equation gives us the lower bound on m in the Lemma. The constant C
⌘̂,k

is exactly

|C0|
|C0|+|C⇤|  1+(k�1)⌘̂

2+(k�1)⌘̂

which is the same as the constant in Lemma 4.7. B

Recovering One Split

Each time we call RISING or SPLIT we attempt to recover one internal node of the tree. In terms
of dependence on m, we showed above that as long as m is sufficiently large, the sampling phase
will result in a new balance factor ⌘̂ that is not too different from the original balance factor ⌘
and that Single Linkage will produce clusters that reflect the subtrees. Combining the bounds on
m from all three phases, we have the following lower bound on m:

m > c
⌘̂,k

log(pm2/�)

(q6 � C
⌘̂,k

)

2
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And the restrictions on the probability of an uncorrupted entry arise from the clustering and
voting phases, but the voting phase’s condition is more stringent. We therefore need q6 > C

⌘̂,k

Finally, we require that the balance factor of the tree ⌘ = O(1) so that ⌘̂ will also be a constant
for large enough m with high probability.

Putting these conditions together, we can characterize the dependence on m and p under which
successful recovery of a single split is possible. Specifically, we have that if m = ⌦(log(p/�)),
then with probability � 1� � (where � , �

1

+ �
2

+ �
3

), we correctly recover one internal node.

Recovering All Splits

There are at most p internal nodes in the tree. To recover all of these with probability 1�o(1), we
set each �

i

= O(1/p), and again characterize the dependence between m and p. In the sampling
phase, we require that m = !(log p) to ensure that ⌘̂ does not grow with p. In clustering, we
similarly require m = !(log(m2p)). Finally, in the voting phase, we see that m = !(log(p)).

These bounds determine conditions for successful recovery of the entire tree. B

4.5.4 Proof of Theorem 4.4

We will analyze each level of the tree. Since ⌘ is bounded, there are O(log p) levels of the tree.

At each level, let C be the set of all groups we are trying to split at this level, that is each C 2 C
is the set of nodes passed in as the first parameter to SPLIT, or in the case of the first call, C just
contains one set with all of the nodes. For each group C 2 C let p

C

denote the number of nodes
in C and let m

C

denote the value of the parameter m which can be a function of |C| 4.

For each cluster C, we require m
C

(m
C

+ 1)/2 measurements between sampled nodes and, in
SPLIT, an additional m

C

measurements from the set Y . In the voting phase, we vote on p
C

�m
C

nodes and for each node we require m
C

+1 measurements to the sampled nodes and to one node
in Y . Putting this together, we have that at any level, we use:

X

C2C

m
C

(m
C

+ 1)

2

+m
C

+ (p
C

�m
C

)(m
C

+ 1) 
X

C2C
p
C

(m
C

+ 1)  p(m+ 1),

as long as m
C

> 1 for all C, and where m , m
p

is the value of m passed into the call to
RISING, i.e. it is the largest value of m across all calls to RISING and SPLIT. Here we used thatP

C2C pC = p. Therefore, regardless of the balancedness of the tree, at each level we use O(pm)

measurements, and as described above, there are O(log p) levels resulting in a measurement
complexity of O(pm log p). The factor of l arises because each call to SPLIT splits the subtrees
of a node into two groups; it may take up to l calls to recover each internal node.

4Specifically m = m(|C|) can be any increasing function of |C|
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Lastly, we can compute edge lengths using O(m) measurements. Since this is dominated by the

above bounds, we ignore this dependence. B

4.6 Conclusion

In this chapter we studied the multi-source network tomography problem. We developed two
algorithms, with theoretical guarantees, to construct tree metrics that approximate distances be-
tween end hosts in a network. We also demonstrated the effectiveness of these algorithms on real
world datasets.

Turning to the themes of this thesis, this chapter lends evidence to our three claims about interac-
tive learning. First, while we did not explicitly compare with non-interactive algorithms, we did
show that our interactive approaches have strong guarantees on both statistical performance and
measurement complexity. In contrast, naı̈ve non-interactive approaches would have significantly
higher measurement complexity to achieve the same level of statistical performance. Thus, we
see evidence for the fact that interactivity lends statistical power in unsupervised problems.

Regarding computation, our two algorithms are also computationally efficient. As we saw, both
of our algorithms have O(p2polylog(p)) computational complexity. Naı̈ve algorithms have sig-
nificantly worse running time; the most obvious algorithm would compute all quartets and stitch
these structures together, and therefore run in O(p4) time. While it would be desirable to have
linear time algorithms, we already see supporting evidence for the fact that interactivity brings
computational efficiency.

Lastly, in the additive noise model, we measured uniformity via the degree of the tree. We saw
that the measurement complexity of both algorithms degrades as the problems become more
uniform (higher degree), and if the tree has ⌦(p) degree, then our algorithm matches a naı̈ve
non-interactive approach. This lends evidence to our claim that interactivity is powerful in the
presence of non-uniformity.
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Chapter 5

Minimaxity in the Structured Normal
Means Problem

The prevalence of high-dimensional signals in modern scientific investigation has inspired an
influx of research on recovering structural information from noisy data. These problems arise
across a variety of scientific and engineering disciplines; for example identifying cluster struc-
ture in communication or social networks, multiple hypothesis testing in genomics, or anomaly
detection in vision and sensor networking. Broadly speaking, this line of work shows that high-
dimensional statistical inference can be performed at low signal-to-noise ratios provided that the
data exhibits low-dimensional structure. Specific structural assumptions include sparsity [107],
low-rankedness [74], cluster structure [118], and many others [46].

The literature in this direction focuses on three inference goals: detection, localization or recov-
ery, and estimation or denoising. Detection tasks involve deciding whether an observation con-
tains some meaningful information or is simply ambient noise, while recovery and estimation
tasks involve more precisely characterizing the information contained in a signal. Specifically,
in recovery problems, the goal is to identify, from a finite collection of signals, which signal
produced the observed data. The estimation or denoising problem involves leveraging structural
information to produce high-quality estimates of the signal generating the data. These prob-
lems are closely related, but also exhibit important differences, and this chapter focuses on the
recovery problem.

One frustration among researchers is that algorithmic and analytic techniques for these prob-
lem differ significantly for different structural assumptions. This issue was recently resolved
in the context of the estimation problem, where the atomic norm [46] has provided a unifying
algorithmic and analytical framework, but such a theory for detection and recovery problems
remains elusive. In this chapter, we provide a unification for the recovery problem, giving us
better understanding of how signal structure affects statistical performance.

Modern measurement technology also often provides flexibility in designing strategies for data
acquisition, and this adds an element of complexity to inference tasks. As a concrete example,
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crowdsourcing platforms allow for interactive data acquisition, which can be used to recover
cluster structure with lower measurement overhead [123, 160]. Non-interactive experimental
design-based (i.e. non-uniform) data acquisition is also enabled by modern sensing technol-
ogy, leading to two important questions: (1) How do we design sensing strategies for structure
recovery problems? (2) When should interactive acquisition be preferred to non-interactive ac-
quisition? We provide an answer to the first of these questions, and progress toward an answer
to the latter.

To concretely describe our main contributions, we now develop the decision-theoretic framework
of this chapter. We study the structured normal means problem defined by a finite collection
of vectors V = {v

j

}M
j=1

⇢ Rd that index a family of probability distributions P
j

= N (v
j

, I
d

).
An estimator T for the family V is a measurable function from Rd to [M ], and its maximum risk
is:

R(T,V) = sup

j2[M ]

R
j

(T,V), R
j

(T,V) = P
j

[T (y) 6= j],

where we always use y ⇠ P
j

to be the observation. We are interested in the minimax risk:

R(V) = inf

T

R(T,V) = inf

T

sup

j2[M ]

P
j

[T (y) 6= j]. (5.1)

We call this the isotropic setting because each gaussian has spherical covariance. We are specif-
ically interested in understanding how the complexity of the family V influences the minimax
risk. This setting encompasses recent work on sparsity recovery [107], biclustering [39, 118],
and many graph-based problems [161]. An example to keep in mind is the k-sets problem, where
the collection V is formed by vectors µ1

S

for subsets S ⇢ [d] of size k and some signal strength
parameter µ.

We also study the experimental design setting, where the learning algorithm can specify a
sensing strategy, defined by a vector B 2 Rd

+

. Using this strategy, under P
j

, the observation is:

y(i) ⇠ v
j

(i) + B(i)�1/2N (0, 1) = N (v
j

(i), B(i)�1

), 8i 2 [d]. (5.2)

If B(i) = 0, then we say that y(i) = 0 almost surely. We call this distribution P
j,B

, to denote
the dependence both on the target signal v

j

and the sensing strategy B. The total measurement
effort, or budget, used by the strategy is kBk

1

, and we are typically interested in signal recovery
under some budget constraint. Specifically, the minimax risk in this setting is:

R(V , ⌧) = inf

T,B:kBk
1

⌧

sup

j2[M ]

P
j,B

[T (y) 6= j]. (5.3)

With this formalization, we can now state our main contributions:

1. We give nearly matching upper and lower bounds on the minimax risk for both isotropic
and experimental design settings (Theorems 5.1 and 5.5). This result matches many special
cases that we are aware of [161], which we show through examples. Moreover, in exam-
ples with an asymptotic flavor (defined below), this shows that the maximum likelihood
estimator (MLE) achieves the minimax rate.
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2. In the isotropic case, we derive a condition on the family V under which the MLE exactly
achieves the minimax risk, which certifies optimality of this estimator. In this case, we also
give a heuristic algorithm that exploits connections to Bayesian inference and attempts
to improve on the MLE, This algorithm gives some insights into how to appropriately
regularize an inference problem.

3. We give sufficient conditions that certify an optimality property of an experimental design
strategy and also give an algorithm for computing such a strategy prior to data acquisi-
tion. We give an example where a non-uniform strategy outperforms the isotropic one and
two examples (one well-known and one new) where interactive strategies provably out-
perform all non-interactive ones. This latter result shows that interactive sampling can be
significantly more powerful than non-interactive experimental design.

5.1 Related Work

The structured normal means problem has a rich history in statistics, although the majority of
work focus on detection or estimation in nonparametric settings, for example when the signals
belong to Besov or Sobolev spaces [109, 110]. More recently attention has turned to combina-
torial structures and the finite dimensional case. This line is motivated by statistical applications
involving complex data sources, such as tasks in graph-structured signal processing [156], and
the broad goal is to understand how combinatorial structures affect both statistics and computa-
tion in these inference problems.

Focusing on detection problems, a number of papers study various combinatorial structures,
including k-sets [3], cliques [161], paths [10], and clusters [156] in graphs, and for many of
these problems, near-optimal detection is possible. For example, Addario-Berry et al. [3] show
that to test between the null hypothesis that every component of the vector is N (0, 1) and the
alternative that k components have mean µ, the detection threshold is µ ⇣

q
log(1 +

d

k

2

). This
means that if µ grows faster than this threshold, one can achieve error probability tending to zero,
and if µ grows slower than this threshold, all procedures have error probability tending to 1. This
style of result is now available for several examples, although a unifying theory for detection
problems is still undeveloped.

Turning to recovery or localization, again several specific examples have been analyzed. The
most popular example is the biclustering problem, where V corresponds to d

1

⇥d
2

matrices of the
form µ1

Cl
1T

Cr
with C

l

⇢ [d
1

], C
r

⇢ [d
2

] [39, 118, 161]. However, apart from this example and a
few others [161], minimax bounds for the recovery problem are largely unknown. Moreover, we
are unaware of a broadly applicable analysis, like the method we develop here.

A unified treatment is possible for estimation problems, where the atomic norm framework gives
sharp phase transitions for the maximum likelihood estimator [6, 46]. The atomic norm is a
generic approach for encoding structural assumptions by decomposing the signal into a sparse
convex combination of a set of base atoms (e.g., one-sparse vectors). While this line primarily
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focuses on linear inverse problems [6, 46], there are results for the estimation problem described
above [34, 136]. While we are unaware of minimax bounds for either setting, it is well known
that the the mean squared error of the MLE is related to the statistical dimension of the cone
formed by the atoms. Unfortunately, atomic norm techniques rely on convex relaxation which
enables estimation but not recovery, as the minimax probability of error for any dense family is
one. Moreover, the non-convexity of our risk poses new challenges that do not arise with the
strongly-convex mean squared error objective.

While much of the literature has focused on the isotropic case, there has been recent interest
in experimental design or interactive methods, aiming to quantify the statistical improvements
enabled by interactivity. The first result in this line is a simple interactive procedure for the
k-sets recovery problem due to Haupt, Castro and Nowak [107]. More recently, Tanczos and
Castro [161] study more structured instantiations and show more significant statistical improve-
ments via interactive methods. Their work makes important progress, but it does not address the
general problem, as they hand-craft sampling algorithms for each example. A unifying, inter-
active algorithm was proposed in the bandit optimization setting [48], but, in our setting, it is
not known to improve on non-interactive approaches. To our knowledge, a unifying interactive
algorithm and a satisfactory characterization of the advantages offered by interactive sampling
remain elusive open questions. This chapter makes progress on the latter by developing lower
bounds against all non-interactive approaches.

Lastly, there is a close connection between our setting and the channel coding problem in an
Additive White Gaussian Noise (AWGN) Channel [59, 60]. In channel coding, we are tasked
with designing a large code V such that if we send the codeword v

j

, an observer, upon observing
y ⇠ N (v

j

, I
d

), can reliably predict the codeword sent. While the error metric is usually the
same as in our setup, typical coding-theoretic results focus on codebook design, rather than error
analysis for a particular codebook, which is our focus here. To our knowledge, the results here
do not appear in the information theory literature.

5.2 Main Results

In this section we develop the main results of the chapter. We start by bounding the minimax
risk in the isotropic setting, then develop a certificate of optimality for the maximum likelihood
estimator, and turn to the algorithmic question of computing minimax optimal estimators. Lastly,
we turn to the experimental design setting. We provide proofs in Section 5.5.

5.2.1 Bounds on the Minimax Risk

In the isotropic case, recall that we are given a finite collection V of vectors {v
j

}M
j=1

and an
observation y ⇠ N (v

j

, I
d

) for some j 2 [M ]. Given such an observation, a natural estimator is
the maximum likelihood estimator (MLE), which outputs the index j for which the observation
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was most likely to have come from. This estimator is defined as:

TMLE(y) = argmax
j2[M ]

P
j

(y) = argmin
j2[M ]

kv
j

� yk2
2

. (5.4)

We will analyze this estimator, which partitions Rd based on a Voronoi Tessellation of the set V .

As stated, the running time of the estimator is O(Md), but it is worth pausing to remark briefly
about computational considerations. In many examples of interest, the class V is combinatorial
in nature, so M may be exponentially large, and efficient implementations of the MLE may not
exist. However, as our setup does not preclude unstructured problems, the input to the estimator
is the complete collection V , so the running time of the MLE is linear in the input size. If
the particular problem is such that V can be compactly represented (e.g. it has combinatorial
structure), then the estimator may not be polynomial-time computable. This presents a real
issue, as researchers have shown that a minimax-optimal polynomial time estimator is unlikely
to exist for the biclustering problem [51, 128], which we study in Section 5.3. However, since the
primary interest of this work is statistical in nature, we will ignore computational considerations
for most of our discussion.

We now turn to a characterization of the minimax risk, which involves analysis of the MLE. The
following function, which we call the Exponentiated Distance Function, plays a fundamental
role.
Definition 5.1. For a family V and ↵ > 0, the Exponentiated Distance Function (EDF) is:

W (V ,↵) = max

j2[M ]

W
j

(V ,↵) with W
j

(V ,↵) =
X

k 6=j

exp

✓�kv
j

� v
k

k2
2

↵

◆
(5.5)

In the following theorem, we show that the EDF governs the performance of TMLE. More im-
portantly, this function also leads to a lower bound on the minimax risk, and the combination
of these two statements shows that the MLE is nearly optimal for any structured normal means
problem.
Theorem 5.1. Fix � 2 (0, 1). If W (V , 8)  �, then R(V)  R(V , TMLE)  �. On the other
hand, if W (V , 2(1� �)) � 2

1

1�� � 1, then R(V) � �.

In particular, by setting � = 1/2 above, the second statement in the theorem may be replaced by:
If W (V , 1) � 3, then R(V) � 1/2. This setting often aids interpretability of the lower bound.

Notice that the value of ↵ disagrees between the lower and upper bounds, and this leads to a gap
between the necessary and sufficient conditions. This is not purely an artifact of our analysis, as
there are many examples where the MLE does not exactly achieve the minimax risk. However,
most structured normal means problems also have an asymptotic flavor, specified by a sequence
of problems V

1

,V
2

, . . ., and a signal-strength parameter µ, with observation y ⇠ N (µv
j

, I
d

) for
some signal v

j

in the current family. In this asymptotic framework, we are interested in how µ
scales with the sequence to drive the minimax risk to one or zero. Almost all existing examples
in the literature are of this form [161], and in all such problems, Theorem 5.1 shows that the
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MLE achieves the minimax rate. To our knowledge, such a comprehensive characterization of
recovery problems is entirely new.

Application of Theorem 5.1 to instantiations of the structured normal means problem requires
bounding the EDF, which is significantly simpler than the typical derivation of this style of result.
In particular, proving a lower bound no longer requires construction of a specialized subfamily
of V as was the de facto standard in this line of work [118, 161]. In Section 5.3, we show how
simple calculations can recover existing results.

Turning to the proof, the EDF arises naturally as an upper bound on the failure probability of
the MLE after applying a union bound and a Gaussian tail bound. Indeed the fact that the EDF
upper bounds the minimax risk is not particularly surprising. It is however more surprising that
it also provides a lower bound on the minimax risk. We obtain this bound via application of
Fano’s Inequality, but we use a version that allows a non-uniform prior and explicitly construct
this prior using the EDF. This leads to our more general lower bound.

5.2.2 Minimax-Optimal Recovery

Theorem 5.1 shows that that maximum likelihood estimator achieves near-optimal performance
for all structured normal means recovery problems. By near-optimal, we mean that in problems
with some asymptotic flavor, where the family of vectors grows but also becomes more separated,
the maximum likelihood estimator achieves the minimax rate. However, in many cases the MLE
is not the optimal estimator, i.e. it does not achieve the exact minimax risk. In this section,
we use deeper connections between the minimax risk and the Bayes risk to address this gap.
Specifically, we give a sufficient condition for the minimax optimality of the MLE, and we will
also design an algorithm that in other cases produces an estimator with better minimax risk.

Our approach is based on a well-known connection between the minimax risk and the Bayes risk.
For a structured normal means problem defined by a family V , the Bayes risk for an estimator T
under prior ⇡ 2 �

M�1

is given by:

B
⇡

(T ) =
MX

j=1

⇡
j

P
j

[T (y) 6= j].

We say that an estimator T is the Bayes estimator for prior ⇡ if it achieves the minimum Bayes
risk. A simple calculation reveals the structure of the Bayes estimator for any prior ⇡ and this
structural characterization is essential to our development.
Proposition 5.2. For any prior ⇡, the Bayes estimator T

⇡

has polyhedral acceptance regions,
that is the estimator is of the form:

T (Y ) = j if y 2 A
j

,

with A
j

= {x : �

j

x � b
j

} and �

j

2 RM⇥d has v
j

� v
k

in the kth row and b
j

has 1

2

(kv
j

k2
2

�
kv

k

k2
2

) + log

⇡k
⇡j

in the kth entry. These polyhedral sets A
j

partition the space Rd.
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We also exploit the relationship between the minimax risk and the Bayes risk. This is a well
known result, although for completeness we provide a proof in Subsection 5.5.4. The prior ⇡
below is known as the least-favorable prior.
Proposition 5.3. Suppose that T is a Bayes estimator for some prior ⇡. If the risk R

j

(T ) =

R
j

0
(T ) for all j 6= j0 2 [M ], then T is a minimax optimal estimator.

Our main theoretical result leverages this proposition along with the structural characterization
of Bayes estimators to certify minimax optimality of the MLE. The sufficient condition for opti-
mality depends on a particular structure of the family V:
Definition 5.2. A family V is unitarily invariant if there exists a set of orthogonal matrices
{R

i

}N
i=1

such that for each vector v 2 V , the set {R
i

v}N
i=1

is exactly V .

In other words, the instance V can be generated by applying the orthogonal transforms to any
fixed vector in the collection. Unitarily invariant problems exhibit high degrees of symmetry and
via Proposition 5.3, can be shown to be a sufficient condition for the optimality of the MLE.
Theorem 5.4. If V is unitarily invariant, then the MLE is minimax optimal.

Some remarks about the theorem are in order:

1. This theorem reduces the question of optimality to a purely geometric characterization of
the family V and, as we will see, many well studied problems are unitarily invariant. One
common family of orthogonal matrices is the set of all permutation matrices on Rd.

2. This result does not characterize the risk of the MLE; it only shows that no other estimator
has better risk. Specifically, it does not provide an analytic bound that is sharper than
Theorem 5.1. From a practitioner’s perspective, an optimality certificate for an estimator
is more important than a bound on the risk as it help govern practical decisions, although
risk bounds enable theoretical comparison.

3. Lastly, the result is not asymptotic in nature but rather shows that the MLE achieves the
exact minimax risk for a fixed family V . We are not aware of any other results in the
literature that certify optimality of the MLE under our measure of risk.

The proof of this theorem is based on the observation that the point-wise risk R
j

(V) is exactly
1� P

j

[A
j

] where P
j

is the gaussian measure centered at v
j

and A
j

is a particular polytope based
on the Voronoi Tessellation of the point set V . We use this characterization and the unitary
invariance of the family to show that the risk landscape for the MLE is constant across the
hypotheses v

j

. Finally, we employ a dual characterization of the minimax risk, to show that if
the risk landscape is constant, then the MLE must be optimal.

In problems where Theorem 5.4 can be applied, we now have a complete story for the isotropic
case. We know that the MLE exactly achieves the minimax risk and Theorem 5.1 also gives
satisfactory upper and lower bounds. However, many problems of interest do not have unitarily
invariant structure, and, in many of these problems, the MLE is suboptimal.

To improve on the MLE in these settings we now develop an algorithm for finding a better
estimator. Our approach is to optimize over the space of priors ⇡ in an iterative fashion, starting
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Algorithm 12 PRIOROPT(V)
Initialize ⇡(j) = 1/M for each j 2 [M ].
For each j 2 [M ], compute g

j

= P
j

[A
j

] where A
j

= {x 2 Rd

: �

j

x � b
j

} where �

j

has
v
j

� v
k

in the kth row and b
j

has kv
j

k2/2� kv
k

k2/2 + log(⇡
k

/⇡
j

) in the kth entry.
while Entropy of ~gPm

j=1

gj
is far from logM . do

Let j
min

= argmin

j

g
j

and j
max

= argmax

j

g
j

.
Update ⇡(j

min

) = ⇡(j
min

) + ⌘
t

, ⇡(j
max

) = ⇡(j
max

)� ⌘
t

for some step size ⌘
t

.
Recompute g

j

using new prior.
end while

at the uniform prior ⇡
0

, whose Bayes estimator is the MLE. At each iteration, we compute the
risk functional of the current Bayes estimator, which, by Proposition 5.2, is related to gaussian
volumes of a collection of polytopes. These gaussian volumes can be approximated with Monte
Carlo sampling. We find the hypothesis j

min

and j
max

with lowest and highest risk respectively
and adjust the prior by shifting mass from j

min

to j
max

. The aim is to move the prior so as to
flatten out the risk functional. See Algorithm 12 for a more precise sketch.

The algorithm is based on zero-th order ascent of the entropy of a particular distribution. The
distribution is the normalized risk functional, and the the parameter space is the prior distribution
⇡ on the hypothesis. By maximizing entropy, we aim to make this distribution uniform which
amounts to making the risk functional constant. By Proposition 5.3, this would lead to a minimax
optimal estimator. Specifically, the algorithm aims to solve the following program:

maximize
⇡2�M�1

H(g
1,⇡

, g
2,⇡

, . . . , g
M,⇡

) (5.6)

where g
j,⇡

= P
j

[A
j,⇡

] and A
j,⇡

is the polytope given in Proposition 5.2 for prior ⇡ and H :

RM

+

! R is the entropy functional after normalizing the argument to lie on the simplex.

Unfortunately, it is not clear whether Program 5.6 is convex in the parameter ⇡. The main chal-
lenge in analyzing this program is that the point-wise risks g

j,⇡

involve the gaussian volume of
arbitrary polyhedral sets, and these are not, in general, analytically tractable quantities. Therefore
it is not clear how the parameter ⇡ affects the objective function here, which precludes analysis
of this algorithm.

The gaussian volumes also pose a computational barrier, as even computing these volumes tend
to be difficult. While there has been research on approximating the gaussian volume of a convex
set [58], these algorithms require that one initially knows a small ball contained entirely in the
set. In principle, one could do this here by solving a linear program to find a point in the interior
of the polytope, but we find that Monte Carlo sampling is significantly more straightforward.
Monte Carlo sampling seemed to work well for problems in moderate dimension.

So while this algorithm is not known to have convergence guarantees, iterates do tend to have
higher entropy and therefore have more uniform risk landscapes. BayesThis means that even
though the algorithm does not necessarily find the least favorable prior, it does lead to a prior
whose Bayes estimator is an improvement over the maximum likelihood estimator, except for in
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Figure 5.1: Example structured normal means problem on nine points in two dimensions. Left:
polyhedral acceptance regions of MLE. Center: Acceptance regions of Bayes estimator from
the optimized prior computed by Algorithm 12. Right: Success probability landscape (success
probability for each hypothesis) for the two estimators, demonstrate that the optimized estimator
has better minimax risk.

cases where the MLE is optimal. For many problems, it is therefore worth running even a few
iterations of this algorithm to obtain a slightly better estimator.

One interpretation of this algorithm is in terms of regularization. The prior computed can be
viewed as a regularizer and the ensuing Bayes estimator can be viewed as a regularized MLE.
With this lens, Algorithm 12 can be thought of as computing a good regularizer for the struc-
tured normal means problem defined by V . Unfortunately, we have no rigorous guarantees on
Algorithm 12, although we hope this interpretation can influence future work on choosing regu-
larizers.

In Figure 5.1, we demonstrate this algorithm and compare against the MLE. The example has
nine points in two dimensions (which enables visualization) and the left panel shows the polyhe-
dral acceptance regions of the MLE. The central panel shows the acceptance region of the Bayes
estimator computed by Algorithm 12 and the right panel shows the risk landscape of these two
estimators. Specifically, in the third panel, the x-axis corresponds to the nine hypotheses, and the
lines denote P

j

[A
j

], which, as we saw, is just one minus the risk for hypothesis j. The minimax
risk is therefore one minus the minimum value on these curves.

Notice that the risk landscape of the optimized estimator is essentially constant which roughly
certifies that it is minimax optimal (By Proposition 5.3). More qualitatively, the minimax risk
of this optimized estimator is significantly better than that of the MLE. The reason for this is
that, under the MLE, the acceptance region for the central hypothesis is very small, so the MLE
has low acceptance probability for that hypothesis. The optimized estimator uses an expanded
acceptance region for this hypothesis which increases the acceptance probability and decreases
the minimax risk. Of course, this comes at the cost of decreasing the acceptance probability for
other hypotheses, which leads to a flattening of the risk landscape.
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5.2.3 The Experimental Design Setting

Recall the experimental design setting, where the statistician specifies a strategy B 2 Rd

+

and
receives observation y ⇠ P

j,B

given by Equation 5.2. Our main insight is that the choice of B
only changes the metric structure of Rd, and this change can be incorporated into the proof of
Theorem 5.1. Specifically, the likelihood for hypothesis j, under sampling strategy B is:

P
j

(y|B) =

dY

i=1

r
B(i)

2⇡
exp(�B(i)(v

j

(i)� y(i))2/2)

and the maximum likelihood estimator is:

TMLE(y, B) = argmin

j2[M ]

kv
j

� yk2
B

where kvk2
B

=

P
d

i=1

v(i)2B(i) is the Mahalanobis norm induced by the diagonal matrix diag(B).

Theorem 5.1 can be ported directly to this setting, leading to the following:
Theorem 5.5. Fix � 2 (0, 1) and any sampling strategy B with kBk

1

 ⌧ . Define the Sampling

Exponentiated Distance Function SEDF:

W (V ,↵, B) = max

j2[M ]

X

k 6=j

exp

✓�kv
j

� v
k

k2
B

↵

◆
(5.7)

If W (V , 8, B)  � then R(V , ⌧)  R(V , TMLE(y, B))  �. Conversely, if W (V , 2(1� �), B) �
2

1

1�� � 1, then inf

T

sup

j2[M ]

P
j,B

[T (y) 6= j] � �.

The structure of the theorem is almost identical to that of Theorem 5.1, but it is worth making
some important observations. First, the theorem holds for any non-interactive sampling strategy
B 2 Rd

+

, so the upper bound is strictly more general than Theorem 5.1. Secondly, any non-
interactive strategy can be used to derive an upper bound on the minimax risk, but the same is
not true for the lower bound. Instead the lower bound provided by the theorem is dependent on
the strategy, so one must still minimize over sampling strategies to lower bound R(V , ⌧). Note
that this theorem also applies to the non-isotropic or heteroscedastic case with known, shared
covariance.

Fortunately, the SEDF is convex in B so it can be numerically minimized over the polyhedron
{z : 0  z

i

 1,
P

d

i=1

z
i

 B}. Specifically, for any ↵, we solve the convex program:

minimize
B2Rd

+

,kBk
1

⌧

max

j2[M ]

X

k 6=j

exp

✓�kv
j

� v
k

k2
B

↵

◆
, (5.8)

To obtain the sampling strategy ˆB that minimizes the SEDF. For example, solving Program 5.8
with ↵ = 1 results in a strategy ˆB, and if W (V , 1, ˆB) � 3, then we know that the minimax risk
R(V , ⌧) over all strategies is at least 1/2. On the other hand, solving with ↵ = 8 to obtain a (dif-
ferent) sampling strategy ˆB and then using ˆB with the MLE would give the tightest upper bound
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on the risk attainable by our proof technique. In Section 5.3, we demonstrate an example where
this optimization leads to a non-uniform sampling strategy that outperforms uniform sampling.

In the general setting, it is challenging to analytically certify that an allocation strategy ˆB mini-
mizes the SEDF, but in some cases it is possible. Specializing the first-order optimality conditions
for Program 5.8 to our setting gives the following:
Proposition 5.6. Let ˆB be an sampling strategy with kBk

1

= ⌧ . Let S( ˆB) ⇢ V be the set of
hypotheses achieving the maximum in W (V ,↵, ˆB) and let ⇡ be a distribution on S( ˆB). If, for all
i, i0 2 [d],

E
j⇠⇡

X

k 6=j

(v
k

(i)� v
j

(i))2 exp(�kv
k

� v
j

k2
B

) = E
j⇠⇡

X

k 6=j

(v
k

(i0)� v
j

(i0))2 exp(�kv
k

� v
j

k2
B

),

then ˆB is a minimizer of W (V ,↵, B) subject to kBk
1

 ⌧ .

While application of this result could involve a number of non-trivial calculations, there are many
cases where it does lead to analytic lower bounds for particular problems. Specifically, the result
is especially useful when ˆB is uniform across the coordinates, and S( ˆB) = [M ], so that all of the
hypotheses achieve the maximum. In this case, it often suffices to choose ⇡ to be uniform over
the hypotheses and exploit the high degree of symmetry to demonstrate the condition holds. As
we will see in Section 5.3, many examples studied in the literature exhibit the requisite symmetry
for this proposition to be applied in a straightforward manner.

We remark that Tanczos and Castro [161] establish a similar sufficient condition for the uniform
sampling strategy to be optimal. Their result however is slightly less general in that it only
certifies optimality for the uniform sampling strategy, whereas ours, in principle, can be applied
more universally. In addition, their result applies only to problems where the hypotheses are
of the form µ1

S

for a collection of subsets while ours is more general, and this generality is
important for some examples (e.g., the hierarchical clustering example in Section 5.3). The other
main difference is that their approach is not based on the SEDF, so their result is not directly
applicable here.

5.3 Examples

To demonstrate the scope of our results, we present four instantiations of structured normal
means problems, and derive results easily attainable from our general approach. These examples
have the asymptotic flavor described before, where we are interested in how a signal strength
parameter µ scales with a sequence of problem instances. To simplify presentation, we state the
results in terms of the minimax rate  and use the notation µ ⇣  where  is a function that
depends on the parameters of the sequence (e.g., the dimension). This notation means that if
µ = !(1) , then the minimax risk can be driven to zero and conversely, if µ = o(1) , then the
minimax risk approaches one asymptotically.
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The first example, the k-sets problem, is well studied, and as a warmup, we show how our tech-
nique recovers existing results. The second example is the biclustering problem; this problem is
interesting because there is polynomial separation between non-interactive and interactive proce-
dures, and our technique can be used to establish lower bounds on all non-interactive approaches.
The third example is a graph-structured signal processing problem, and this example is interest-
ing because our technique generalizes existing results, but also because uniform sampling may
not be optimal. In the last example, we use Theorem 5.1 to demonstrate the achievability of the
channel capacity in additive white gaussian noise (AWGN) channel, showing how an easy calcu-
lation can reproduce the proof of Shannon [155]. The requisite calculations for these examples
are deferred to Section 5.5.

5.3.1 k-sets

In the k-sets problem, we have M =

�
d

k

�
and each vector v

j

= 1
Sj where S

j

⇢ [d] and |S
j

| = k.
The observation is y ⇠ N (µv

j

, I
d

) for some hypothesis j.
Corollary 5.7. The minimax rate for the k-sets problem is µ ⇣p

log(k(d� k)) and with budget

constraint ⌧ , it is µ ⇣
q

d

⌧

log(k(d� k)). In the isotropic case, the MLE is minimax optimal.

This corollary follows simply by bounding the EDF for the k-sets problem using binomial ap-
proximations. Using Proposition 5.6, it is easy to verify that uniform sampling is optimal here,
which immediately gives the second claim. Finally using the set of all permutation matrices
and exploiting symmetry, we can easily verify that this class is unitarily invariant. These bound
agrees with established results in the literature [161].

5.3.2 Biclusters

In the biclustering problem, we instead work over Rd⇥d and let M =

�
d

k

�
2

. We parametrize
the class V with two indices so that v

ij

= 1
Si1

T

Sj
is a d ⇥ d matrix with k2 non-zeros with

|S
i

| = |S
j

| = k. The observation is y ⇠ N (µvec(v
ij

), I
d

2

) for a hypothesis (i, j).

Corollary 5.8. The minimax rate for the biclustering problem is µ ⇣
q

log(k(d�k))

k

and with

budget constraint ⌧ , it is µ ⇣
q

d

2

⌧k

log(k(d� k)). In the isotropic case, the MLE is minimax
optimal.

Our bounds agree with existing analyses of this class [39, 118, 161]. Obtaining this result in-
volves simply bounding the EDF using binomial approximations as in the k-sets example, and
straightforward applications of Theorem 5.4 and Proposition 5.6 with the uniform distribution.

The biclustering problem is interesting because a simple interactive algorithm has significantly
better statistical performance. The algorithm first samples coordinates of the matrix randomly,
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Figure 5.2: Left: A realization of the stars problem for a graph with 13 vertices and 34 edges
with sampling budget ⌧ = 34. Edge color reflects allocation of sensing energy and vertex color
reflects success probability for MLE under that hypothesis (warmer colors are higher for both).
Isotropic (left) has minimum success probability of 0.44 and experimental design (center) has
minimum success probability 0.56. Right: Maximum risk for isotropic and experimental design
sampling as a function of µ for stars problem on a 50 and 100-vertex graph.

with enough energy so as to reliably test if a coordinate is active or not, until it finds an ac-
tive coordinate. It then senses on the row and column of that coordinate and identifies the rows
and columns that are active in the bicluster. Tanczos and Castro [161] show that this algorithm
succeeds if µ = !(

q�
d

2

⌧k

2

+

d

⌧

�
log d, which is a factor of

p
k smaller than the lower bound

established here, demonstrating concrete statistical gains from interactivity. Note that this sepa-
ration is known [161]. We provide a crude by sufficient analysis of this interactive algorithm in
Section 5.5.

5.3.3 Stars

Let G = (V,E) be a graph and let the edges be numbered 1, . . . , d. The class V is the set of all
stars in the graph, that is the vector v

j

2 {0, 1}d is the indicator vector of all edges emanating
from the jth node in the graph. Again the observation is y ⇠ N (µv

j

, I
d

) for some j 2 [|V |].
Corollary 5.9. In the stars problem if the ratio between the maximum and minimum degree is

bounded by a constant, i.e. deg
max

deg
min

 c, then the minimax rate is µ ⇣
q

log(|V |�deg
min

)

deg
min

.

Again this agrees with a recent result of Tanczos and Castro [161], who consider s-stars of the
complete graph, formed by choosing a vertex, and then activating s of the edges emanating out of
that vertex. The two bounds agree in the special case of the complete graph with s = |V |�1, but
otherwise are incomparable, as they consider different problem structures. Note that the degree
requirement here is not fundamental in Theorem 5.1, but rather a shortcoming of our calculations.

We highlight this example because the uniform allocation strategy does not necessarily minimize
W (V ,↵, B). In Figure 5.2, we construct a graph according to the Barabási-Albert model [5] and
consider the class of stars on this graph. The simulation results show that optimizing the SEDF
to find a sampling strategy is never worse than uniform sampling, and for low signal strengths
it can lead to significantly lower maximum risk. We believe the increases in the right-most plot
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are caused by numerical instability arising from the non-smooth optimization problem 5.8. Note
that the risk for both uniform and non-uniform sampling approaches zero as µ!1, so for large
µ, there is little advantage to optimizing the sampling scheme.

5.3.4 Random Codes

Consider a collection V of M vectors with coordinates that are i.i.d. N (0, P ). In expectation
over the draw of the M vectors, the Bayes risk of the maximum likelihood estimator under the
uniform prior is:

EVEj⇠Unif[M ]

P
j

[error]  (M � 1)(1 + P/2)�d/2

In other words if M = o((1 + P/2)d/2), then the maximum likelihood decoder can drive the
probability of error to zero as d!1.

In information theoretic terms, this quick calculation roughly says that there exists a rate R =

log(M)/d =

1

2

log(1+P/2)�!(1/d) code with power constraint P , that can be reliably transmit-
ted over an additive white noise gaussian (AWGN) channel with noise variance 1. This nearly
matches Shannon’s Channel Coding theorem [59] which says that the rate cannot exceed the
channel capacity, which in our case is 1

2

log(1 + P ).

There are two small weaknesses of this calculation in comparison with the classical achievability
of the channel capacity. The first is that our bound involves the term log(1 + P/2) instead of
log(1 + P ) in the definition of channel capacity. We suspect this is due to weakness in our
bounding technique in Theorem 5.1, which in part allows for significantly more generality than
this special case. The second is that the codewords we use are drawn from N (0, P ) so they
will exceed the power constraint kvk2

2

 P with constant probability. This shortcoming can be
remedied by instead using N (0, P � c/d) and applying well known �2 deviation bounds.

5.4 Discussion

In this chapter, we studied the structured normal means problem and gave a unified characteri-
zation of the minimax risk both for isotropic and experimental design settings. Our work gives
insights into how to choose estimators (e.g., the optimality certificate for the MLE) and how
to design sampling strategies for structure recovery problems. Our lower bounds are critical in
demonstrating separation between non-interactive and interactive sampling, which is an impor-
tant research direction.

There are a number of exciting directions for future work, including extensions to other structure
discovery problems such as detection, and to other observation models, such as compressive
observations. We are most interested in developing a unifying theory for interactive sampling,
analogous to the theory developed here. The challenges with developing such an understanding
are both algorithmic and information theoretic, and we are excited to tackle these challenges.
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5.5 Proofs

5.5.1 Proof of Theorem 5.1

Analysis of MLE: We first analyze the maximum likelihood estimator:

T
MLE

(y) = argmin

j2[M ]

kv
j

� yk2
2

This estimator succeeds as long as kv
k

� yk2
2

> kv
j

? � yk2
2

for each k 6= j?, when y ⇠ P
j

? . This
condition is equivalent to:

kv
k

� yk2
2

> kv
j

? � yk2
2

, h✏, v
k

� v
j

?i < 1

2

kv
j

? � v
k

k2
2

where ✏ ⇠ N (0, 1). This follows from writing y = v
j

?
+ ✏ and then expanding the squares. So

we must simultaneously control all of these events, for fixed j?:

P
✏⇠N (0,Id)

⇥8k 6= j?.h✏, v
k

� v
j

?i < kv
j

? � v
k

k2
2

/2
⇤

= 1� P
✏⇠N (0,Id)

⇥9k 6= j?.h✏, v
k

� v
j

?i � kv
j

? � v
k

k2
2

/2
⇤

� 1�
X

k 6=j

?

P
✏⇠N (0,Id)

⇥h✏, v
k

� v
j

?i � kv
j

? � v
k

k2
2

/2
⇤

By a gaussian tail bound, this probability is:

P
✏⇠N (0,Id)

⇥h✏, v
k

� v
j

?i � kv
j

? � v
k

k2
2

/2
⇤  exp

⇢
�1

8

kv
j

? � v
k

k2
2

�

So that the total failure probability is upper bounded by:

P
j

?
[

ˆj = j?] 
X

k 6=j

?

exp

⇢
�1

8

kv
j

? � v
k

k2
2

�
= W

j

?
(V , 8)

So if j is the truth, then the probability of error is smaller than � when W
j

(V , 8)  �. For the
maximal (over hypothesis choice j) probability of error to be smaller than �, it suffices to have
W (V , 8)  �.

Fundamental Limit: We now turn to the fundamental limit. We start with a version of Fano’s
inequality with non-uniform prior.
Lemma 5.10 (Non-uniform Fano Inequality). Let ⇥ = {✓} be a parameter space that indexes a
family of probability distributions P

✓

over a space X . Fix a prior distribution ⇡, supported on ⇥

and consider ✓ ⇠ ⇡ and X ⇠ P
✓

. Let f : X ! ⇥ be any possibly randomized mapping, and let
p
e

= P
✓⇠⇡,X⇠P✓

[f(X) 6= ✓] denote the probability of error. Then:

p
e

� 1�
P

✓

⇡(✓)KL(P
✓

||P
⇡

) + log 2

H(⇡)
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where P
⇡

(·) = E
✓⇠⇡

P
✓

(·) is the mixture distribution. In particular, we have:

inf

f

sup

✓

P
X⇠P✓

[f(X) 6= ✓] � inf

f

E
✓⇠⇡

P
X⇠P✓

[f(X) 6= ✓] � 1�
P

✓

⇡(✓)KL(P
✓

||P
⇡

) + log 2

H(⇡)

Proof. Consider the Markov Chain ✓ ! X ! ˆ✓ , f(X) where ✓ ⇠ ⇡ and X|✓ ⇠ P
✓

. Let
E = 1[ˆ✓ 6= ✓].

H(E|X) +H(✓|E,X) = H(E, ✓|X) = H(✓|X) +H(E|✓, X) � H(✓|X)

Now, H(E|✓, X) � 0 and since conditioning only reduces entropy, we have the inequality

H(✓|X)  H(p
e

) +H(✓|E,X) = H(p
e

) +H(✓|E = 0, X)P [E = 0] +H(✓|E = 1, X)P [E = 1]

= H(p
e

) + p
e

H(✓)

which proves the usual version of Fano’s inequality. We want to write H(✓|X) in terms of the
KL divergence, using the mixture distribution P

⇡

.

H(✓|X) = H(✓, X)�H(X) =

Z X

✓

⇡(✓)P
✓

(x) log
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Z
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✓
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||P
⇡

) +H(⇡)

Combining these gives the bound:

H(p
e

) + p
e

H(⇡) � H(⇡)�
X

✓

⇡(✓)KL(P
✓

||P
⇡

),

By upper bounding H(p
e

)  log 2 and rearranging we prove the claim. B
For a distribution ⇡ 2 �

M�1

over the hypothesis, let P
⇡

(·) =

P
k

⇡
k

P
k

(·) be the mixture dis-
tribution. Then Fano’s inequality (Lemma 5.10) states that the minimax probability of error is
lower bounded by:

R(V) = inf

T

sup

j

P
j

[T (y) 6= j] � inf

T

E
j⇠⇡

E
y⇠j

1[T (y) 6= j]
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||P
⇡

) + log 2

H(⇡)
.

Fix � 2 (0, 1) and let j? = argmax

j2[M ]

W
j

(2(1��)). We will use a prior based on this quantity:

⇡
k

/ exp

✓
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k
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2

2(1� �)
◆
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With this prior, the entropy becomes:

H(⇡) =
X

k

⇡
k

log

0

@
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2
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X
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KL(P
k

||P
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?
)

The 1 inside the first log comes from the fact that in the definition W
j

? , we do not include the term
involving j? in the sum, while our prior ⇡ does place mass proportional to 1 on hypothesis j?.
The term involving the KL-divergence follows from the fact that the KL between two gaussians
is one-half the `2

2

-distance between their means.

Looking at the lower bound from Fano’s inequality, we see that if:

E
k⇠⇡

KL(P
k

||P
⇡
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)

then the probability of error is lower bounded by �. Of course it is immediate that:
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(x) log

✓
P
k

(x)P
⇡

(x)

P
⇡

(x)P
j

?
(x)

◆

=

X

k

⇡
k

Z
P
k

(x) log
P
k

(x)

P
⇡

(x)
+

X

k

Z
⇡
k

P
k

(x) log
P
⇡

(x)

P
j

?
(x)

=

X

k

⇡
k

KL(P
k

||P
⇡

) +KL(P
⇡

||P
j

?
) � E

k

KL(P
k

||P
⇡

)

So the condition reduces to requiring that:

log 2  (1� �) log(W (V , 2(� � 1) + 1).

After some algebra, this is equivalent to:

W (V , 2(� � 1)) � 2

1

1�� � 1 B

5.5.2 Proof of Theorem 5.5

The proof of Theorem 5.5 is essentially the same as the proof of Theorem 5.1, coupled with two
observations. First, for a sampling strategy B 2 Rd

+

the maximum likelihood estimator is:

TMLE(y, B) = argmin

j2[M ]

kv
j

� yk2
B
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so the analysis of the MLE depends on the Mahalanobis norm k · k
B

instead of the `
2

norm.

Similarly, the KL divergence between the distribution P
j,B

and P
k,B

depends on the Mahalanobis
norm k · k

B

instead of the `
2

norm. Specifically, we have:

KL(P
j,B

||P
k,B

) =

1

2

kv
j

� v
k

k2
B

.

The lower bound proof instead use this metric structure, but the calculations are equivalent.

B

5.5.3 Proof of Proposition 5.6

To simplify the presentation, let f(B) = W (V ,↵, B). f(B) is convex and (strictly) monotoni-
cally decreasing, so we know that the minimum will be achieved when the constraint is tight, i.e.
when kBk

1

= ⌧ . The Lagrangian is:

L(B,�) = f(B) + �(kBk
1

� ⌧)

and the minimum is achieved at ˆB, with k ˆBk
1

= ⌧ , if there is a value ˆ� such that 0 2 @L( ˆB, ˆ�).
Observing that the subgradient is @f(B) + �1, it suffices to ignore the Lagrangian term and
instead ensure that @f(B) / 1. f(B) is a maximum of M convex functions, where f

j

(B) is
the function corresponding to hypothesis v

j

, and, by direct calculation, the subgradient of this
function f

j

(B) is:

@f
j

(B)

@B
i

=

X

k 6=j

�(v
k

(i)� v
j

(i))2 exp(�kv
k

� v
j

k2
B

).

Moreover, the subgradient of the maximum of a set of functions is the convex hull of the subgra-
dients of all functions achieving the maximum. This means that if there exists a distribution ⇡,
supported over the maximizers of f( ˆB), such that the expectation of the subgradients is constant,

we have certified optimality of ˆB. This is precisely the condition in the Proposition. B

5.5.4 Proof of Theorem 5.4

Proof of Proposition 5.2: To prove Proposition 5.2, we make two claims. First we certify that
for a prior ⇡, the Maximum a Posteriori (MAP) estimator is a Bayes estimator for prior ⇡. Given
⇡, the map estimator is:

T
⇡

(y) = argmax

j

⇡(j) exp{�kv
j

� yk2
2

/2}
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Define the posterior risk of an estimator T to be the expectation of the loss, under the posterior
distribution on the hypothesis. In our case this is:

r(T |y) =
MX

j=1

1[T (y) 6= j]⇡(j|y) where ⇡(j|y) / ⇡(j) exp{�kv
j

� yk2
2

/2}.

For a fixed y, this quantity is minimized by letting T (y) be the maximizer of the posterior, as this
makes the 0 � 1 loss term zero for the largest ⇡(j|y) value. Thus for each y we minimize the
posterior risk by letting T (y) be the MAP estimate. The result follows by the well known fact
that if an estimator minimizes the posterior risk at each point, then it is the Bayes estimator.

This argument shows that the only types of estimators we need to analyze are MAP estimators
under various priors. This gives us the requisite structure to prove Proposition 5.2.

Specifically, for a prior ⇡, for the MAP estimate to predict hypothesis j, it must be the case that:

8k 6= j. ⇡
j

exp{�kv
j

� yk2
2

/2} � ⇡
k

exp{�kv
j

� v
k

k2
2

/2}.
This can be simplified to:

hv
j

� v
k

, yi � 1

2

(kv
j

k2
2

� kv
k

k2
2

) + log

⇡
k

⇡
j

.

Thus the acceptance region for the hypothesis j is the set of all points y that satisfy all of these

M � 1 inequalities. This is exactly the polyhedral set A
j

. B
Proof of Proposition 5.3: We provide a proof of this well-known result showing that the Bayes
estimator with uniform risk landscape is minimax optimal. Let T

⇡

be the Bayes estimator under
prior ⇡ and let T

0

be some other estimator. Since T
⇡

has constant risk landscape, we know that
max

j

R
j

(V , T
⇡

) = B
⇡

(T
⇡

), or the minimax risk for T
⇡

is equal to its Bayes risk. We know that
the Bayes risk of T

0

is at most the minimax risk for T
0

, i.e. B
⇡

(T
0

)  max

j

R
j

(V , T
0

). If it were
the case that T

0

had strictly lower minimax risk, then we have:

B
⇡

(T
0

)  max

j

R
j

(V , T
0

) < max

j

R
j

(V , T
⇡

)  B
⇡

(T
⇡

).

However, this is a contradiction since T
⇡

is the Bayes estimator under prior ⇡, meaning that it

minimizes the Bayes risk. B
Proof of Theorem 5.4: Our goal is to apply Proposition 5.3. By the fact that R

j

(V , T ) = 1 �
P
j

[A
j

] where A
j

is T ’s acceptance region for hypothesis j, we must show that the P
j

probability
content of the acceptance regions are constant. Ignoring the normalization factor of the gaussian
density, this is:

Z

Aj

exp{�kv
j

� xk2
2

/2}dx,
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where A
j

= {z|�
j

z � b
j

} as defined in Proposition 5.2. We will exploit the unitary invariance
of the family.

For any pair of hypothesis j, k, let R
jk

be the orthogonal matrix such that v
k

= R
jk

v
j

and note
that R

kj

, the orthogonal matrix that maps v
k

to v
j

, is just RT

jk

. This also means that R
jk

RT

jk

=

R
jk

R
kj

= I . Via a change of variables x = R
kj

y, the integrand becomes:

exp{�kv
j

�R
kj

yk2
2

/2} = exp{�kR
jk

v
j

�R
jk

R
kj

yk2
2

/2} = exp{�kv
k

� yk2
2

/2}.

Thus, we have translated to the P
k

measure.

As for the region of integration, first note that since v
i

= R
ji

v
j

, it must be the case that kv
j

k2
2

=

kv
i

k2
2

for all j, i 2 [M ]. This means that the vector b
j

defining the acceptance region, which for
the MLE has coordinates b

j

(i) =

1

2

(kv
j

k2
2

� kv
i

k2
2

), is just the all-zeros vector. The region of
integration is therefore:

{z|�
j

z � 0} = {z|�
j

R
kj

z � 0}.

We must check that this polytope is exactly A
k

, which means that we must check that for each i,
(v

j

� v
i

)

TR
kj

is a row of the �

k

matrix. But:

(v
j

� v
i

)

TR
kj

= vT
j

RT

jk

� vT
i

RT

jk

= vT
k

� vT
i

RT

jk

.

Since v
i

can generate the family V , it must be the case that R
jk

v
i

2 V so that this difference does
correspond to some row of �

k

. Since we apply the same unitary operator to all of the rows, it must
be the case that the number of distinct rows is unchanged, or in other words, there is a bijection
from the rows in �

j

R
kj

to the rows in �

k

. Therefore, the transformed region of integration, after
the change of variable x = R

kj

y is exactly the acceptance region A
k

, and the integrand is the P
k

measure. This means that P
k

[A
k

] = P
j

[A
j

] and this is true for all pairs (j, k), so that the risk

landscape is constant. By Proposition 5.3, this certifies optimality of the MLE. B

5.5.5 Calculations for the examples

Calculations for k-Sets: We must upper and lower bound W (V ,↵). First note that by symmetry,
every hypothesis achieves the maximum, so it suffices to compute just one of them:

W (V ,↵) =
X

k 6=j

exp

��kv
k

� v
j

k2
2

/↵
�
=

kX

s=1

✓
k

s

◆✓
d� k

s

◆
exp(�2sµ2/↵).

This follows by noting that the `2
2

distance between two hypothesis is the symmetric set difference
between the two subsets, and then by a simple counting argument. Using well known bounds on
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binomial coefficients, we obtain:

W (V ,↵) 
kX

s=1

exp(s log(ke/s) + s log((d� k)e/s)� 2sµ2/↵)

=

kX

s=1

exp(s log(e2k(d� k)/s2)� 2sµ2/↵)

 k exp(log e2k(d� k)� 2µ2/↵) if 2µ2/↵ � log(e2k(d� k))

This is smaller than � whenever µ2 � ↵ log(ek(d � k)/�), which subsumes the requirement
above. For the lower bound:

W (V ,↵) �
kX

s=1

exp(s log(k/s) + s log((d� k)/s)� 2sµ2/↵) � exp(�2µ2/↵ + log(k(d� k)))

which goes to infinity if µ2

= o(↵ log(k(d� k))).

To certify that the uniform allocation strategy minimizes W (V ,↵, B), we apply Proposition 5.6.
Fix ⌧ and let ˆB be such that ˆB(i) = ⌧/d. By symmetry, every hypothesis achieves the max-
imum under this allocation strategy, and we will take ⇡ to be the uniform distribution over all
hypothesis.

For a hypothesis j and a coordinate i, the subgradient @fj(B)

@B(i)

at ˆB
i

depends on the whether
v
j

(i) = 0 or not. If v
j

(i) = 0, then:

@f
j

(B)

@B(i)
= µ2

kX

s=1

✓
d� k � 1

s� 1

◆✓
k

k � s

◆
exp(�2⌧µ2s2/d),

and if v
j

(i) = µ2 then:

@f
j

(B)

@B(i)
= µ2

kX

s=1

✓
d� k

s

◆✓
k � 1

k � s

◆
exp(�2⌧µ2s2/d).

Both of these follow from straightforward counting arguments. Notice that the value of the
subgradient depends only on whether v

j

(i) = 0 or not, and under the uniform distribution ⇡,
E

j⇠⇡

v
j

(i) = E
j⇠⇡

v
j

(i0). This implies that the constant vector is in the subgradient of f(B) at ˆB,
so that ˆB is the minimizer of W (V ,↵, B) subject to kBk

1

 ⌧ .

We have already done the requisite calculation to bound the minimax risk under sampling.
The calculations above show that if µ = !(

q
d

⌧

log(k(d� k))) then the maximum likelihood
estimator, when using the uniform sampling strategy has risk tending to zero. Conversely if
µ = o(

q
d

⌧

log(k(d� k))) then the minimax risk, for any allocation strategy tends to one.
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Calculation for Biclusters: Due to symmetry, all hypotheses achieve the maximum and there-
fore, we can directly calculate W (V ,↵). We use the notation C i

n

to denote the binomial coeffi-
cient

�
n

i

�
.

W (V ,↵) =
kX

sr=1

kX

sc=1

Csr
k

Csc
k

Csr
d�k

Csc
d�k

exp

✓
�2µ2

↵
(s

r

(k � s
c

) + s
c

(k � s
r

) + s
r

s
c

)

◆

+

kX

sr=1

Csr
k

Csr
d�k

exp

✓
�2µ2

↵
(s

r

k)

◆
+

kX

sc=1

Csc
k

Csc
d�k

exp

✓
�2µ2

↵
(s

c

k)

◆

This last two term comes from the case where s
c

= 0 or s
r

= 0, which is all of the hypotheses
that share the same columns but disagree on the rows (or share the same rows but disagree on the
columns). Using binomial approximations, the first term can be upper bounded by:


kX

sr=1

kX

sc=1

exp

✓
s
r

log

k(d� k)e2

s2
r

+ s
c

log

k(d� k)e2

s2
c

� 2µ2

↵
(s

r

(k � s
c

/2) + s
c

(k � s
r

/2))

◆


kX

sr=1

exp

✓
s
r

✓
log

k(d� k)e2

s2
r

� kµ2

↵

◆◆
kX

sc=1

exp

✓
s
c

✓
log

k(d� k)e2

s2
c

� kµ2

↵

◆◆
.

The two terms here are identical, so we will just bound the first one:

kX

sr=1

exp

✓
s
r

✓
log

k(d� k)e2

s2
r

� kµ2

↵

◆◆


kX

sr=1

exp

�
s
r

�
log(k(d� k)e2)� kµ2/↵

��

 k exp
�
log(k(d� k)e2)� kµ2/↵

�
if µ2 � ↵

k
log(k(d� k)e2)

Applying this inequality to both terms gives a bound on W (V ,↵). This bound is smaller than �
as long as µ � p

c

k↵

log(k(d� k)e/�) for some universal constant c. Again this subsumes the
condition required for the inequality to hold.

The other two terms are essentially the same. Using binomial approximations, both expressions
can be bounded as:

kX

sr=1

Csr
k

Csr
d�k

exp

✓
�2µ2

↵
(s

r

k)

◆
=

kX

sr=1

exp(s
r

log(e2k(d� k)/s2
r

)� 2s
r

kµ2/↵)

 k exp(log(k(d� k)e2)� 2kµ2/↵) if µ2 � ↵

2k
log(k(d� k)e2).

These bounds lead to the same minimax rate as above.
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For the lower bound, we again use binomial approximations.

W (V ,↵) �
kX

sr=1

kX

sc=1

exp

✓
s
r

log

k(d� k)

s2
r

+ s
c

log

k(d� k)

s2
c

� 2µ2

↵
(s

r

(k � s
c

/2) + s
c

(k � s
r

/2))

◆

�
kX

sr=1

exp

✓
s
r

✓
log

k(d� k)e2

s2
r

� 2kµ2

↵

◆◆
kX

sc=1

exp

✓
s
c

✓
log

k(d� k)e2

s2
c

� 2kµ2

↵

◆◆

� exp(log(k(d� k)� 2µ2k/↵)2

This lower bound goes to infinity if µ = o(
q

1

k

log(k(d� k))) lower bounds the minimax rate.

To certify that the uniform allocation strategy minimizes W (V ,↵, B), we apply Proposition 5.6.
Fix ⌧ and let ˆB be such that ˆB((a, b)) = ⌧/d2 for all (a, b) 2 [d] ⇥ [d]. By symmetry, every
hypothesis achieves the maximum under this allocation strategy, and we will take ⇡ to be the
uniform distribution over all hypothesis.

For a hypothesis j, let f
j

(B) denote the term in the SEDF centered around j. For a hypothesis
j based on clusters S

l

, S
r

and a coordinate (a, b), the subgradient @fj(B)

@B(a,b)

at ˆB(a, b) depends on
whether a 2 S

l

and b 2 S
r

. If a /2 C
l

and b /2 C
r

, then:

@f
j

(B)

@B(a, b)

����
B=

ˆ

B

=

�µ2

↵

kX

sr=1

kX

sc=1

Csr�1

d�k�1

Csr
k

Csc�1

d�k�1

Csc
k

exp(

�2⌧µ2

↵d2
(s

r

(k � s
c

/2) + s
c

(k � s
r

/2))).

This follows by direct calculation. Similar calculations yield the other cases:

@f
j

(B)

@B(a, b)

����
B=

ˆ

B

=

�µ2

↵

k�1X

sr=0

kX

sc=1

Csr
d�k

Csr
k�1

Csc�1

d�k�1

Csc
k

exp(

�2⌧µ2

↵d2
(s

r

(k � s
c

) + s
c

(k � s
r

) + s
r

s
c

)).

@f
j

(B)

@B(a, b)

����
B=

ˆ

B

=

�µ2

↵

kX

sr=1

k�1X

sc=0

Csr�1

d�k�1

Csr
k

Csc
d�k

Csc
k�1

exp(

�2⌧µ2

↵d2
(s

r

(k � s
c

) + s
c

(k � s
r

) + s
r

s
c

)).

@f
j

(B)

@B(a, b)

����
B=

ˆ

B

=

�µ2

↵

k�1X

sr=0

k�1X

sc=0

Csr
d�k

Csr
k�1

Csc
d�k

Csc
k�1

exp(

�2⌧µ2

↵d2
(s

r

(k � s
c

) + s
c

(k � s
r

) + s
r

s
c

)).

These correspond to the cases a 2 S
l

, b /2 S
r

, a /2 S
l

, b 2 S
r

and the case where a 2 S
l

, b 2 S
r

respectively. The main point is that the value of the subgradient depends only on presence or
absence of the row/column in the cluster, and under the uniform distribution ⇡, each row/column
is equally likely to be in the cluster. This means that for every coordinate (a, b) taking the
expected subgradient with respect to the uniform distribution over hypotheses yields the same
expression. So the constant vector is in the subgradient of f(B) at ˆB, so that ˆB is the minimizer
of W (V ,↵, B) subject to kBk

1

 ⌧ .

We have already done the requisite calculation to bound the minimax risk under sampling. The
calculations above show that if µ = !(

q
d

2

k⌧

log(k(d� k))) then the maximum likelihood es-
timator, when using the uniform sampling strategy has risk tending to zero. Conversely if
µ = o(

q
d

2

k⌧

log(k(d� k))) then the minimax risk, for any allocation strategy tends to one.
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The biclusters family is clearly unitarily invariant with respect to the set of orthonormal matrices
that permute the rows and columns independently. The family is easiest to describe as acting
on the matrices 1

Sl
1T

Sr
. Let P

l

, P
r

be any two d ⇥ d permutation matrices. Then the matrix
P
l

1
Sl
(1

SrPr

)

T is clearly another hypothesis, and as we vary P
l

and P
r

we generate all of the
hypothesis. Note that these permutations are unitary operators on the matrix space Rd⇥d, which
allows us to apply Theorem 5.4.

For the analysis of the interactive algorithm, let us first bound the probability that the algorithm
makes a mistake on any single coordinate. Consider sampling a coordinate x with mean µ and
noise variance 1/b. A Gaussian tail bound reveals that:

P[|x� µ| � ✏]  2 exp(�2b✏2).
We will sample no more than d2 coordinates and we will sample each coordinate with the same
amount of energy b. So by the union bound, the probability that we make a single mistake in
classifying a coordinate that we query is bounded by �/2 as long as:

µ � 2✏ =

r
2

b
log(4d2/�).

We now need to bound b, which depends on the total number of coordinates queried by the
algorithm. In the first phase of the algorithm, we sample coordinates uniformly at random until
we hit one that is active. Since each sample hits an active coordinate with probability k2/d2:

P[hit active coordinate in T samples] = 1� (1� k2/d2)T � 1� 1

eTk

2

/d

2

,

or if T =

d

2

k

2

log(2/�), the probability that we hit an active coordinate in T samples will be at least
1 � �/2. The total number of samples we use then can be upper bounded by 2d +

d

2

k

2

log(2/�),
which means that we can allocate our budget ⌧ evenly over these coordinates. Therefore we can
set b = ⌧(2d+ d

2

k

2

log(2/�))�1, and plugging into the condition on µ above proves the result.

Calculation for Stars: For the stars problem, define Nb(j) ⇢ V to be the neighbors of the vertex
j in the graph. For a fixed hypothesis j, we have

W
j

(V ,↵) =
X

k 6=j

exp

��kv
k

� v
k

k2
2

/↵
�

=

X

k2Nb(j)

exp(�µ2

(deg(k) + deg(j)� 2)/↵) +
X

k/2Nb(j)

exp(�µ2

(deg(k) + deg(j))/↵)

 exp

��µ2deg
min

/↵� µ2deg(j)/↵
� �

deg(j) exp(2µ2/↵) + |V |� deg(j)
�

This last inequality follows by replacing every deg(k) with deg
min

, the lower bound on the de-
grees. This last expression is maximized with deg(j) = deg

min

, which can be observed by
noticing that the derivative with respect to deg(j) is negative. This gives the bound:

W (V ,↵)  exp

��2µ2deg
min

/↵
� �

deg
min

exp(2µ2/↵) + |V |� deg
min

�

116



One can lower bound W (V ,↵) by choosing the hypothesis j with deg(j) = deg
min

and then
replacing all other degree terms with deg

max

in the above calculations. This gives:

W (V ,↵) � exp

✓
�µ2

↵
(deg

min

+ deg
max

)

◆⇣
deg

min

e2µ
2

/↵

+ |V |� deg
min

⌘

Calculation for Random Codes: In the proof of Theorem 5.1, we saw that for a hypothesis j,
we can bound the probability of error by:

P
j

[error] 
X

k 6=j

exp(�kv
j

� v
k

k2
2

/8)

This means that:

EVEj⇠Unif([M ])

P
j

[error]  EV
1

M

MX

j=1

X

k 6=j

exp(�kv
j

� v
k

k2
2

/8)

= (M � 1)E
v,v

0
exp(�kv � v0k2

2

/8) = (M � 1)

dY

j=1

E
x⇠�

2

1

exp(�Px/4)

= (M � 1)(1 + P/2)�d/2.

Notice that the only inequality in this sequence is the first one, which is essentially an application
of Theorem 5.1. The last equality is based on the moment-generating function of a �2

1

random
variable.

To achieve the bound on the rate of the code, set this final expression to be at most some f(d)
which is o(1). Then the probability of error is at most f(d)! 0 and the rate R is:

R =

logM

d
=

1

2

log(1 + P/2) +
log(f(d))

d
=

1

2

log(1 + P/2)� !(1/d)

117



118



Chapter 6

Conclusions

In this thesis we studied interactive and non-interactive algorithms for several unsupervised learn-
ing problems with a focus on understanding the advantages in statistics and computation enabled
by the interactive paradigm. Demonstration of the statistical advantage of interactive learning re-
quires both new algorithmic ideas and new technology to establish fundamental limits on learning
paradigms. In this thesis we made progress in both directions; we developed several new interac-
tive learning algorithms and also showed strong limits on non-interactive algorithms. Combined
these sets of results make a compelling statistical case for interactive learning.

In the examples considered here, we saw how uniformity governed the level of statistical im-
provement offered by interactive learning. In problem instances with high degrees of non-
uniformity, which was measured differently in each problem, we saw that interactive approaches
are significantly stronger than non-interactive ones. While there is at present no unifying the-
ory capturing this effect, but we believe that the examples considered here lend evidence to the
importance of non-uniformity for interactive learning.

Regarding computation, many of the interactive algorithms developed here are faster than exist-
ing non-interactive ones. We made claims about the computational advantage of interactivity in
a non-rigorous way, as establishing running-time lower bounds is often quite challenging. Nev-
ertheless, we find this claim to be quite surprising, as it is not, at present, demonstrated in the
literature on interactive supervised learning.

While there is still much to be explored regarding interactivity in machine learning, we hope the
results in this thesis have made a compelling case for this paradigm. We look forward to future
advances in this direction and a deeper understanding of interactive learning.
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Appendix A

Concentration Inequalities

Here we collect a number of well-known large deviation bounds used throughout the thesis.
Proposition A.1 (Scalar Bernstein). Let X

1

, . . . , X
n

be independent, centered scalar random
variables with �2

=

P
n

i=1

E[X2

i

] and R = max

i

|X
i

|. Then:
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Proposition A.2 (Vector Bernstein [97]). Let X
1

, . . . , X
n

be independent centered random vec-
tors with
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Proposition A.3 (Matrix Bernstein [165]). Let X
1

, . . . , X
n

be independent, random, self-adjoint
matrices with dimension d satisfying:
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Proposition A.4 (Rectangular Matrix Bernstein [165]). Let X
1

, . . . , X
n

be independent random
matrices with dimension d
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satisfying:
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121



Define:

�2

= max

(�����

nX

k=1

E(X
k

XT

k

)

�����
2

,

�����

nX

k=1

E(XT

k

X
k

)

�����
2

)
.

Then, for all t � 0,

P
 �����

nX

k=1

X
k

�����
2

� t

!
 (d

1

+ d
2

) exp

✓ �t2/2
�2

+Rt/3

◆
.

122



Bibliography

[1] Dimitris Achlioptas and Frank Mcsherry. Fast computation of low-rank matrix approxi-
mations. Journal of the ACM, April 2007. 14, 22, 33, 34, 43

[2] Dimitris Achlioptas, Zohar S. Karnin, and Edo Liberty. Near-optimal entrywise sampling
for data matrices. In Advances in Neural Information Processing Systems, 2013. 14

[3] Louigi Addario-Berry, Nicolas Broutin, Luc Devroye, and Gábor Lugosi. On combinato-
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