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The contextual bandit protocol

For round t = 1, . . . , T :

•Observe context xt ∈ X (nature chooses ℓt : A 7→ [0, 1]))

•Choose action at ∈ A (possibly randomized)

•Observe loss ℓt(at) ∈ [0, 1]

Regret(T,Π) , E

[

T
∑

t=1
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π∈Π
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]
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How do we handle continuous action spaces in the contextual bandit protocol?

•Contextual bandits with finite action sets well studied, regret scales with number of actions.

•Lipschitz bandits is a special case, but requires smoothness assumptions.

•Main idea: We replace actions with “smoothed” actions and policies with
smoothed policies, enabling standard techniques, which we refine.

•The point: No smoothness assumptions required. They are baked into
the benchmark. (We recover existing results with smoothness.)

Smoothed Regret

Definition 1.For bandwidth h ≥ 0, define Smoothh : A → ∆(A) and policy class

Πh = {Smoothh(π) : x 7→ Smoothh(π(x)) : π ∈ Π}

New performance measure: Regret(T,Πh).

•Example: A = [0, 1] with metric ρ(a, a′) = | a− a′ |. Smoothh(a) = Unif({a′ : ρ(a, a′) ≤ h}).
• Intuition: Smoothing allows us to focus on “estimation error,” yielding assumption-free results.

• Intuition: The “smoothed loss” ℓ(a) , Eb∼Smoothh(a) ℓ(b) is 1/h-Lipschitz, so prior work yields

O(T 2/3(1/h)1/3) in non-contextual setting (generalizes to O(T 2/3(1/h log |Π|)1/3) for contextual setting).

Theorem 2. In the adversarial setting, for h ≥ 0, EXP4 with Ξ = Πh guarantees

Regret(T,Πh) ≤ O
(

√

T/h log |Π|
)

.

Main observation: For policy ξ : x 7→ Unif({a′ : ρ(π(x), a′) ≤ h}), we have

E
at,ξ
ℓ̂t(ξ)

2 ≤ 1

h

∫

E
ξ∼Pt

ξ(a | xt)
pt(a | xt)

dν(a) ≤ 1/h.

Otherwise standard proof is unchanged!

•Optimal for adversarial setting with no further assumptions.

•For L-lipschitz losses by tuning h, we get O(T 2/3(L log |Π|)1/3) regret for Lipschitz (contextual) ban-
dits, recovering the existing optimal rate.

•But doesn’t require smoothness assumptions to get meaningful guarantee!

Zooming CB

Question: Better regret for benign instances?
Answer: Yes, by generalizing prior “zooming” algorithms.

Stochastic setting where (xt, ℓt) ∼ D for each t.

Algorithm 1 SmoothPolicyElimination

Set Π(1) = Π.
for each epoch m = 1, 2, . . . , do
Set Vm = Ex∼D ν(

⋃

π∈Π(m)Bh(π(x))).

Set radius rm = 2−m, epoch length nm ≈ Vm log |Π|
r2mh

, exploration probability µm = rm.

Find distribution Qm over Πm minimizing

max
π∈Π(m)

E
x∼D

E
a∼Smoothh(π(x))

[

1

qm(a | x)

]

,

qm(a | x) = µm + (1− µm) E
π∼Qm

Smoothh(π(xt))

For each of nm rounds, observe xt play at ∼ qm(· | xt) observe loss ℓt(at).
For each π ∈ Π(m), let L̂m(π) be the median-of-means importance weighted estimate of E ℓ(π(x)).

Set Π(m+1) =
{

π ∈ Π(m) : L̂m(π) ≤ minπ′∈Π(m) L̂m(π
′) + 3rm

}

.

Intuition from the non-contextual case: Adaptively discretize action space

Lipschitz: prior work
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Theorem 3.For h ≥ 0, SmoothPolicyElimination guarantees

Regret(T,Πh) ≤ Õ

(

inf
ǫ0≥1/T

Tǫ0 + θh(ǫ0) · log(|Π|)
)

.

For L Lipschitz losses, a similar algorithm guarantees (set hm = 2−m, rm = L2−m)

Regret(T,Π) ≤ Õ

(

inf
ǫ0≥1/T

TLǫ0 + ψL(ǫ0)/L · log(|Π|)
)

.

Smoothing and zooming coefficients θh, ψL are small in favorable instances.

Remarks

•Coefficients, θh and ψL measure size of action space for good policies. Small in favorable instances.

•Best case: smoothed
√

T log |Π| + 1/h log |Π|, Lipschitz
√

T log |Π|.
•Lipschitz result generalizes “zooming dimension” results to contextual case.

•Akin to gap-dependent bound.

Key ideas

•Refined analysis so variance scales with “characteristic volume” Vm.

•Duality certifies small objective value, which controlling variance of loss estimates.

•Median-of-means avoids range dependence (uniform probability insufficient!).

Zooming coefficients: Let Mh(ǫ, δ) , Ex∼D [Nδ(Πh,ǫ(x)) ], where N is the covering number at scale δ and Πh,ǫ(x) =
{π(x) : ED ℓ(πh(x′)) ≤ minπ∈ΠED ℓ(πh(x′)) + ǫ }.

θh(ǫ0) , sup
ǫ≥ǫ0

Mh(12ǫ, h)/ǫ, ψL(ǫ0) , sup
ǫ≥ǫ0

M0(12Lǫ, ǫ)/ǫ.

We have max{1/ǫ, 1/h} ≤ θh(ǫ) ≤ 1/(hǫ) and 1/ǫ ≤ ψL(ǫ) ≤ 1/ǫ2.

Adaptive CB

Question: Can we compete with Πh for all h? Can we adapt to Lipschitz constant?

Theorem 4.Fix α ∈ [0, 1]. Corral with EXP4 (with parameter α) guarantees

∀h ∈ (0, 1] : Regret(T,Πh) ≤ Õ
(

T
1

1+αh−α
)

· ( log |Π| ) α
1+α .

The same algorithm is Lipschitz-adaptive with rate Õ(T
1+α
1+2αL

α
1+α) · (log |Π|) α

1+2α. These are
the optimal adaptive rates for their respective settings for the non-contextual case.

Remarks

•With α = 1 we get
√
T/h and T 2/3

√
L. With α = 1/2 we get T 2/3/

√
h or T 3/4L1/3.

•Lower bounds demonstrate a price of adaptivity, related to Locatelli and Carpentier (2018).

•α traces out Pareto frontier of optimal bounds, which are all incomparable.

•Lipschitz-adaptive algorithms know T,Π and nothing else, unlike much prior work. With extra
information, it is possible to obtain the optimal non-adaptive rates.

Upper bounds: The algorithm is Corral (Agarwal et al., 2016) using copies of EXP4 as base learn-
ers. Corral is just online mirror descent with the log-barrier regularizer, where each “arm” is a bandit
algorithm. For α = 1, when base learners use bandwidths H, Corral ensures

∀h ∈ H : Regret(T,Πh) ≤ Õ

( |H|
η

+ Tη +
Tη

h
· log(|Π|)

)

•Tuning η, ignoring h, and chosing a logarithmically spaced grid H gives the Lipschitz result.

•For smoothed regret, since we want all h ∈ (0, 1], some more tricks are needed!

Lower bounds: Inspired by construction of Locatelli and Carpentier (2018).
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If learner does well in Inst1, it cannot explore enough to find a needle hidden in [0, 1/2] in Inst2.

Generalizations

•Results extend to arbitrary metric spaces.

•Results extends to Smooth given by a kernel K : a 7→ ∆(A).

–Analog of 1/h is κ , supa,a′ | (Ka)(a′) |, the density value w.r.t., base measure ν.

•Example: Finite A = {i/M : i ∈ [M ]} and identity metric recovers standard (contextual) bandits.
But can also use non-degenerate metric and kernel to share informationa across actions.

•Can also obtain results for non-contextual case.

Open problem: Computationally (oracle) efficient algorithms for continuous action spaces?
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