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The contextual bandit protocol
Forroundt=1,....,T": 10 /
e Observe context x; € X (nature chooses ¢; : A — [0, 1])) 0.5-\/

e Choose action a; € A (possibly randomized) 0.0 | o
e Observe loss 4(a;) € |0, 1]

Regret(T,11) £ E | Y fy(ar) | — min E . ,
L t=1 _ L t=1 _ 0 1/2 1

How do we handle continuous action spaces in the contextual bandit protocol?

e Contextual bandits with finite action sets well studied, regret scales with number of actions.

e Lipschitz bandits is a special case, but requires smoothness assumptions.

e Main idea: We replace actions with “smoothed” actions and policies with
smoothed policies, enabling standard techniques, which we refine.

e The point: No smoothness assumptions required. They are baked into
the benchmark. (We recover existing results with smoothness.)

Definition 1. For bandwidth h > 0, define Smooth;, : A — A(A) and policy class

[T, = {Smoothy(m) :  — Smoothy(w(x)) : m € I}

New performance measure: Regret(T, 11j).

\ y

e Example: A = |0, 1] with metric p(a,a’) = |a — a'|. Smoothy(a) = Unif({a’: p(a,a’) < h}).

e Intuition: Smoothing allows us to focus on “estimation error,” yielding assumption-free results.

o Intuition: The “smoothed loss” ¢(a) = Epsmoothy(a) £(b) is 1/h-Lipschitz, so prior work yields
O(T?3(1/n)*?) in non-contextual setting (generalizes to O(T%3(1/nlog |I1])*/?) for contextual setting).

Theorem 2. In the adversarial setting, for h > 0, EXP4 with = = 11}, guarantees

Regret(T',11;,) < O (\/T/h log |H|) .

Main observation: For policy £ : x — Unif({a’ : p(7(x),a’) < h}), we have

) 1 t
Egét(@Q < E/ I cla] 2, dv(a) < Y/n.

Otherwise standard proof is unchanged!

e Optimal for adversarial setting with no turther assumptions.

o For L-lipschitz losses by tuning h, we get O(T*?(Llog |I1|)"/?) regret for Lipschitz (contextual) ban-
dits, recovering the existing optimal rate.

e But doesn’t require smoothness assumptions to get meaningtul guarantee!

Zooming CB Adaptive CB

(Question: Better regret for benign instances?’ Question: Can we compete with 11 for all A7 Can we adapt to Lipschitz constant?

Answer: Yes, by generalizing prior zooming' algorithms. " Theorem 4. Fiz a € |0,1]. Corral with EXP4 (with parameter o) guarantees )
Stochastic setting where (x4, ;) ~ D for each t.
Algorithm 1 SmoothPolicyElimination Vh € (0,1] : Regret(T,11;) < O (T”%“h_@) - (log || )1%&
Set I = TI. e )
for each epoch m =1,2...., do The same algorithm is Lipschitz-adaptive with rate O(T+x L) - (log |I1|)™=22. These are
Set Vi, = Epp V(U ey Br(m(2))). k the optimal adaptive rates for their respective settings for the non-contextual case. )
Set radius r,, = 2=, epoch length n,, ~ Vmi;%lm‘, exploration probability (i, = 7. Remarks
Find distribution @y, over 11, minimizing o With o = 1 we get /T /h and T?3v/L. With o = 1/2 we get T%3/v/h or T34 L3,
o T o { 1 } e Lower bounds demonstrate a price of adaptivity, related to Locatelli and Carpentier (2018).
rellm) 2D g Smoothy(n(z)) | Gm(a | T) e o traces out Pareto frontier of optimal bounds, which are all incomparable.
qm(a | ) =t + (1 — ) E  Smoothy(m(xy)) e Lipschitz-adaptive algorithms know T',II and nothing else, unlike much prior work. With extra

G information, it is possible to obtain the optimal non-adaptive rates.

For each of n,, rounds, observe x; play a; ~ g (- | x¢) observe loss l(ay). U bounds: The aloorithm i« G - e o016 e b
For each 7 € 11" let L,,(7) be the median-of-means importance weighted estimate of E ¢(7(x)). pper bounds: The algorithm is Corral (Agarwal et al, ) using copies o as base learn-

(m+1) (m) . 7 , . ers. Corral is just online mirror descent with the log-barrier regularizer, where each “arm” 1s a bandit
et 1 - { m € 1M 2 Lin(m) < minpenon Lin(m) + 3rm } algorithm. For a = 1, when base learners use bandwidths H, Corral ensures

~ ([ |H T
Intuition from the non-contextual case: Adaptively discretize action space Vh € H : Regret(T,11;) < O (‘—n‘ +1I'n+ 777 : log(\H!)>
Lipschitz: prior work Smoothed
= ——————— ———— = e e Tuning 7, ignoring A, and chosing a logarithmically spaced grid H gives the Lipschitz result.
— — ——— e — . .
%l et %l R T e For smoothed regret, since we want all h € (0, 1], some more tricks are needed!
Lower bounds: Inspired by construction of Locatelli and Carpentier (2018).

(- )

Theorem 3. For h > 0, SmoothPolicyElimination guarantees Inst1l Inst2

1.0 1.0
Regret(T',11;,) < O ( inf Tey+ Op(€p) - log(\H])) .
0211 0.5 0.5
| \/ | \ WY
For L Lipschitz losses, a similar algorithm guarantees (set h,, =27, r,, = L27™) “'l “'l “'l
) 005 1/2 19290 1/2 1
Regret(T,11) < O ( inf T'Ley+ 1r(€)/ L - 10g(|H|)> .
eg>1 : : : : :
02T [f learner does well in Inst1, it cannot explore enough to find a needle hidden in [0,1/2] in Inst2.
g Smoothing and zooming coefficients 0y, 1Y are small in favorable instances. )
Remarks

e Coeflicients, 6, and 1, measure size of action space for good policies. Small in favorable instances. G l. t .
e Best case: smoothed \/T log |IT| 4 /nlog |I1|, Lipschitz \/T log |I1]. €11€rallZatlolls

e Lipschitz result generalizes “zooming dimension” results to contextual case.

e Results extend to arbitrary metric spaces.

Akin t -d dent bound.
® AKIN 10 gap-dependent boull e Results extends to Smooth given by a kernel K : a — A(A).

Key ideas — Analog of U/ is k = SUP, o | (Ka)(a') |, the density value w.r.t., base measure v.

* Refined analysis so variance scales with “characteristic volume” Vi, e Example: Finite A = {i¢/M : i € [M]} and identity metric recovers standard (contextual) bandits.

o Duality certifies small objective value, which controlling variance of loss estimates. But can also use non-degenerate metric and kernel to share informationa across actions.
e Median-of-means avoids range dependence (uniform probability insufficient!). e Clan also obtain results for non-contextual case.
Zooming coefficients: Let Mj(¢,0) = E,up [Ns(IT(z))], where N is the covering number at scale § and IIj, (x) = Open problem: Computationally (oracle) efficient algorithms for continuous action spaces?
{n(x): Epl(my(z')) < mingepn Ep £(mp(2) + € }. Reforences
Or(e0) 2 sup My (12¢, h) /e, Wi(eo) 2 sup Mo(12Le, €) /. 1. Agarwal, Luo, Neyshabur, and Schapire. Corralling a band of bandit algorithms. In COLT, 2016.
€€ €€ 2. Locatelli and Carpentier. Adaptivity to smoothness in X'-armed bandits. In COLT, 2018.

We have max{1/e, 1/h} < 0),(¢) < 1/(he) and 1/e < ¢z (e) < 1/ Learn more at: https://arxiv.org/abs/1902.01520




