The contextual bandit protocol

For round $t = 1, \ldots, T$:

- Observe context $x_t \in \mathcal{X}$ (nature chooses $\ell_t : \mathcal{A} \mapsto [0, 1]$))
- Choose action $a_t \in \mathcal{A}$ (possibly randomized)
- Observe loss $\ell_t(a_t) \in [0, 1]$

$$\operatorname{Regret}(T,\Pi) \triangleq \mathbb{E}\left[\sum_{t=1}^{T} \ell_t(a_t)\right] - \min_{\pi \in \Pi} \mathbb{E}\left[\sum_{t=1}^{T} \ell_t(\pi(x_t))\right]$$

How do we handle continuous action spaces in the contextual bandit protocol?

- Contextual bandits with finite action sets well studied, regret scales with number of actions.
- Lipschitz bandits is a special case, but requires smoothness assumptions.
 - Main idea: We replace actions with "smoothed" actions and policies with smoothed policies, enabling standard techniques, which we refine. • The point: No smoothness assumptions required. They are baked into the benchmark. (We recover existing results with smoothness.)

Smoothed Regret

Definition 1. For bandwidth $h \ge 0$, define $\text{Smooth}_h : \mathcal{A} \to \Delta(\mathcal{A})$ and policy class $\Pi_h = \{ \texttt{Smooth}_h(\pi) : x \mapsto \texttt{Smooth}_h(\pi(x)) : \pi \in \Pi \}$

New performance measure: Regret (T, Π_h) .

- Example: $\mathcal{A} = [0, 1]$ with metric $\rho(a, a') = |a a'|$. Smooth_h $(a) = \text{Unif}(\{a' : \rho(a, a') \leq h\}).$
- Intuition: Smoothing allows us to focus on "estimation error," yielding assumption-free results.
- Intuition: The "smoothed loss" $\ell(a) \triangleq \mathbb{E}_{b \sim \text{Smooth}_h(a)} \ell(b)$ is 1/h-Lipschitz, so prior work yields
- $O(T^{2/3}(1/h)^{1/3})$ in non-contextual setting (generalizes to $O(T^{2/3}(1/h\log|\Pi|)^{1/3})$ for contextual setting).

Theorem 2. In the adversarial setting, for $h \ge 0$, EXP4 with $\Xi = \prod_h$ guarantees $\operatorname{Regret}(T, \Pi_h) \leq O\left(\sqrt{T/h \log |\Pi|}\right).$

Main observation: For policy $\xi : x \mapsto \text{Unif}(\{a' : \rho(\pi(x), a') \leq h\})$, we have

$$\mathbb{E}_{t,\xi} \hat{\ell}_t(\xi)^2 \leq \frac{1}{h} \int \mathbb{E}_{\xi \sim P_t} \frac{\xi(a \mid x_t)}{p_t(a \mid x_t)} d\nu(a) \leq 1/h.$$

Otherwise standard proof is unchanged!

- Optimal for adversarial setting with no further assumptions.
- For L-lipschitz losses by tuning h, we get $O(T^{2/3}(L \log |\Pi|)^{1/3})$ regret for Lipschitz (contextual) bandits, recovering the existing optimal rate.
- But doesn't require smoothness assumptions to get meaningful guarantee!

Contextual Bandits with Continuous Actions: Smoothing, Zooming, and Adapting Akshay Krishnamurthy, John Langford, Aleksandrs Slivkins, Chicheng Zhang Zooming CB Adaptive CB **Question:** Better regret for benign instances? **Answer:** Yes, by generalizing prior "zooming" algorithms. **Theorem 4.** Fix $\alpha \in [0, 1]$. Corral with EXP4 (with parameter α) guarantees **Stochastic setting** where $(x_t, \ell_t) \sim \mathcal{D}$ for each t. 1/2 Algorithm 1 SmoothPolicyElimination Set $\Pi^{(1)} = \Pi$. for each epoch $m = 1, 2, \ldots, do$ Set $V_m = \mathbb{E}_{x \sim \mathcal{D}} \nu(\bigcup_{\pi \in \Pi^{(m)}} B_h(\pi(x))).$ Set radius $r_m = 2^{-m}$, epoch length $n_m \approx \frac{V_m \log |\Pi|}{r_m^2 h}$, exploration probability $\mu_m = r_m$. 1/2 Remarks Find distribution Q_m over Π_m minimizing • With $\alpha = 1$ we get \sqrt{T}/h and $T^{2/3}\sqrt{L}$. With $\alpha = 1/2$ we get $T^{2/3}/\sqrt{h}$ or $T^{3/4}L^{1/3}$. • Lower bounds demonstrate a price of adaptivity, related to Locatelli and Carpentier (2018). $\max_{\pi \in \Pi^{(m)}} \mathbb{E}_{x \sim \mathcal{D}} \mathbb{E}_{a \sim \texttt{Smooth}_h(\pi(x))} \left\lfloor \frac{1}{q_m(a \mid x)} \right\rfloor,$ • α traces out Pareto frontier of optimal bounds, which are all incomparable. $q_m(a \mid x) = \mu_m + (1 - \mu_m) \mathop{\mathbb{E}}_{\pi \sim O} \operatorname{Smooth}_h(\pi(x_t))$ information, it is possible to obtain the optimal non-adaptive rates. For each of n_m rounds, observe x_t play $a_t \sim q_m(\cdot \mid x_t)$ observe loss $\ell_t(a_t)$. For each $\pi \in \Pi^{(m)}$, let $\hat{L}_m(\pi)$ be the median-of-means importance weighted estimate of $\mathbb{E}\,\ell(\pi(x))$. Set $\Pi^{(m+1)} = \left\{ \pi \in \Pi^{(m)} : \hat{L}_m(\pi) \le \min_{\pi' \in \Pi^{(m)}} \hat{L}_m(\pi') + 3r_m \right\}.$ algorithm. For $\alpha = 1$, when base learners use bandwidths \mathcal{H} , Corral ensures $\forall h \in I$ **Intuition from the non-contextual case:** Adaptively discretize action space Lipschitz: prior work Smoothed • Tuning η , ignoring h, and chosing a logarithmically spaced grid \mathcal{H} gives the Lipschitz result. • For smoothed regret, since we want all $h \in (0, 1]$, some more tricks are needed! Lower bounds: Inspired by construction of Locatelli and Carpentier (2018). **Theorem 3.** For $h \ge 0$, SmoothPolicyElimination guarantees Inst1 Regret $(T, \Pi_h) \leq \tilde{O}\left(\inf_{\epsilon_0 > 1/T} T\epsilon_0 + \theta_h(\epsilon_0) \cdot \log(|\Pi|)\right).$ For L Lipschitz losses, a similar algorithm guarantees (set $h_m = 2^{-m}, r_m = L2^{-m}$) 0.0 1/2 Regret $(T,\Pi) \leq \tilde{O}\left(\inf_{\epsilon_0 \geq 1/T} TL\epsilon_0 + \psi_L(\epsilon_0)/L \cdot \log(|\Pi|)\right).$ Smoothing and zooming coefficients θ_h, ψ_L are small in favorable instances. Remarks • Coefficients, θ_h and ψ_L measure size of action space for good policies. Small in favorable instances. Generalizations • Best case: smoothed $\sqrt{T \log |\Pi|} + \frac{1}{h \log |\Pi|}$, Lipschitz $\sqrt{T \log |\Pi|}$. • Lipschitz result generalizes "zooming dimension" results to contextual case. • Results extend to arbitrary metric spaces. • Akin to gap-dependent bound. • Results extends to Smooth given by a kernel $K : a \mapsto \Delta(\mathcal{A})$. Key ideas -Analog of 1/h is $\kappa \triangleq \sup_{a,a'} |(Ka)(a')|$, the density value w.r.t., base measure ν . • Refined analysis so variance scales with "characteristic volume" V_m . • Duality certifies small objective value, which controlling variance of loss estimates. But can also use non-degenerate metric and kernel to share informationa across actions. • Median-of-means avoids range dependence (uniform probability insufficient!). • Can also obtain results for non-contextual case. **Zooming coefficients:** Let $M_h(\epsilon, \delta) \triangleq \mathbb{E}_{x \sim \mathcal{D}}[\mathcal{N}_{\delta}(\Pi_{h,\epsilon}(x))]$, where \mathcal{N} is the covering number at scale δ and $\Pi_{h,\epsilon}(x) =$ **Open problem:** Computationally (oracle) efficient algorithms for continuous action spaces? $\{ \pi(x) : \mathbb{E}_{\mathcal{D}} \ell(\pi_h(x')) \le \min_{\pi \in \Pi} \mathbb{E}_{\mathcal{D}} \ell(\pi_h(x')) + \epsilon \}.$ References 1. Agarwal, Luo, Neyshabur, and Schapire. Corralling a band of bandit algorithms. In COLT, 2016. $\theta_h(\epsilon_0) \triangleq \sup M_h(12\epsilon, h)/\epsilon, \qquad \psi_L(\epsilon_0) \triangleq \sup M_0(12L\epsilon, \epsilon)/\epsilon.$ 2. Locatelli and Carpentier. Adaptivity to smoothness in \mathcal{X} -armed bandits. In COLT, 2018. Learn more at: https://arxiv.org/abs/1902.01520 We have $\max\{1/\epsilon, 1/h\} \le \theta_h(\epsilon) \le 1/(h\epsilon)$ and $1/\epsilon \le \psi_L(\epsilon) \le 1/\epsilon^2$.

Microsoft Research

Question: Can we compete with Π_h for all h? Can we adapt to Lipschitz constant?

 $\forall h \in (0,1] : \operatorname{Regret}(T,\Pi_h) \le \tilde{O}\left(\left|T^{\frac{1}{1+\alpha}}h^{-\alpha}\right|\right) \cdot \left(\left|\log|\Pi|\right|\right)^{\frac{\alpha}{1+\alpha}}.$

The same algorithm is Lipschitz-adaptive with rate $\tilde{O}(T^{\frac{1+\alpha}{1+2\alpha}}L^{\frac{\alpha}{1+\alpha}}) \cdot (\log |\Pi|)^{\frac{\alpha}{1+2\alpha}}$. These are the optimal adaptive rates for their respective settings for the non-contextual case.

• Lipschitz-adaptive algorithms know T, Π and *nothing else*, unlike much prior work. With extra

Upper bounds: The algorithm is **Corral** (Agarwal et al., 2016) using copies of **EXP4** as base learners. Corral is just online mirror descent with the log-barrier regularizer, where each "arm" is a bandit

$$\mathcal{H}: \operatorname{Regret}(T, \Pi_h) \leq \tilde{O}\left(\frac{|\mathcal{H}|}{\eta} + T\eta + \frac{T\eta}{h} \cdot \log(|\Pi|)\right)$$

If learner does well in Inst1, it cannot explore enough to find a needle hidden in [0, 1/2] in Inst2.

• Example: Finite $\mathcal{A} = \{i/M : i \in [M]\}$ and identity metric recovers standard (contextual) bandits.