Faculty Recruiting Support CICS

Abstractions in Reasoning for Long-Term Autonomy

22 Mar
Friday, 03/22/2019 12:30pm to 3:00pm
A311 LGRC
Ph.D. Thesis Defense
Speaker: Kyle Wray

Abstract:

The path to building adaptive, robust, intelligent agents has led researchers to develop a suite of powerful models and algorithms for agents with a single objective. However, in recent years, attempts to use this monolithic approach to solve an ever-expanding set of complex real-world problems, which increasingly include long-term autonomous deployments, have illuminated challenges in its ability to scale. Consequently, a fragmented collection of hierarchical and multi-objective models were developed. This trend continues into the algorithms as well, as each approximates an optimal solution in a different manner for scalability. These models and algorithms represent an attempt to solve pieces of an overarching problem: how can an agent explicitly model and integrate the necessary aspects of reasoning required to achieve long-term autonomy?
 

This thesis presents a general hierarchical and multi-objective model called a policy network that unifies prior fragmented solutions into a single graphical decision-making structure. Policy networks are broadly useful to solve numerous real-world problems. This thesis focuses on autonomous vehicle (AV) problems: (1) route-planning with multiple objectives; (2) semi-autonomy with proactive transfer of control; and (3) intersection decision-making for reasoning online about any number of other vehicles and pedestrians. Formal models are presented for each of the distinct problems. Solutions are evaluated using real-world map data in simulation and demonstrated on a fully operational AV prototype driving on real public roads. Policy networks serve as a shared underlying framework for all three, enabling their seamless integration as parts of an overall solution for rich, real-world, scalable decision-making in agents with long-term autonomy.   Advisor: Shlomo Zilberstein