Faculty Recruiting Support CICS

Spring 21 Course Descriptions

2021 Spring

CICS 191CICS1: CICS First Year Seminar

Instructor(s): Rik Sengupta

An exploration of computer science for first-year computer science majors and exploratory track students, focusing on a single topic. 1 credit. Section 01- To Be Determined

CICS 197R: Special Topics - Introduction to Data Analysis in R

Instructor(s): Jasper McChesney

An introduction to data analysis in the open-source R language, with an emphasis on practical data work. Topics will include data wrangling, summary statistics, modeling, and visualization. Will also cover fundamental programming concepts including data types, functions, flow of control, and good programming practices. Intended for a broad range of students outside of computer science. Some familiarity with statistics is expected. 1 credit.

CICS 298A: Practicum - Leadership: Communicating Across Expertise

Instructor(s): Emma Anderson

No matter where you end up in tech, you will need to explain concepts, products and ideas to people with different technical backgrounds. This course is intended to help prepare you for these communication tasks. Through the lens of tutoring, we will work on explaining technical ideas clearly and compassionately to others. We will do some theoretical study, including a history of CS education as well asbrain and learning science, and some practice, including tutoring beginning students in CS. This course is intended for a broad range of students looking to pursue careers in tech, but will be particularly useful for those who are currently UCAs or intending to apply for UCA positions in the future. Prerequisite: COMPSCI 186 or 187. 1 credit.

CICS 305: Social Issues in Computing

Instructor(s): Siobhan Mei, Justin Obara, Thomas Pickering, Michelle Trim

Through a careful analysis and discussion of a range of computing issues, topics, and polices, we will explore various impacts of computers on modern society. This class satisfies the Junior Year Writing requirement by providing directed practice and specific instruction in a range of writing genres. Students will produce approximately 20-25 pages of polished written work over the course of the semester. Prerequisite: ENGLWRIT 112 (or English Writing waiver), COMPSCI 220, COMPSCI 230 and COMPSCI 240 (or 250), OR ENGLWRIT 112 (or English Writing waiver) AND INFO 248. 3 credits.

CICS 490E: EMBER: Introduction to Research Methods in Computing

Instructor(s): Michelle Trim

The course will contribute to the overall goal of making research in computing more accessible to students from historically underrepresented groups in computer science. To that end, the workshop topics will include a combination of practical, social, and research-related topics. Examples of those topics include cultivating curiosity, building confidence and combatting imposter syndrome, summarizing findings, visualizing data, forming hypotheses, applications in computing, and developing collaboration strategies. These topics will dovetail with the more intensive four-week mini-research module offered by the various participating computing research labs and their faculty leads. This class is part of the EMBER (Energizing Mentoring and Broadening Exposure to Research) project in CICS. 1 credit.

COMPSCI 119: Introduction to Programming

Instructor(s): William Verts

This introduction to computer programming emphasizes problem solving using the Python language. Students will explore basic concepts in computer science and computer programming by writing Python 3 programs to analyze text, create files of graphics commands viewable in a Web browser, and many other tasks. No prior programming experience is needed. Not for CS majors. 3 credits.

COMPSCI 121: Introduction to Problem Solving with Computers

Instructor(s): David Barrington, Eduardo Calle Ortiz, Joseph Canning, Meng-Chieh Chiu, Jaime Davila, Collin Giguere, Adam Kohan, Ghazaleh Parvini, Cheryl Swanier

COMPSCI 121 provides an introduction to problem solving and computer programming using the programming language Java. The course teaches how real-world problems can be solved computationally using the object-oriented metaphor that underlies Java. Concepts and techniques covered include data types, expressions, objects, methods, top-down program design, program testing and debugging, state representation, interactive programs, data abstraction, conditionals, iteration, interfaces, inheritance, polymorphism, arrays, graphics, and GUIs. No previous programming experience is required; however, this course is intended for Computer Science majors or those who plan on applying to the major. Non-majors are strongly encouraged to take one of our programming courses designed for non-majors. Use of a laptop computer on which you can install software is required. Prerequisite: R1 (or a score of 20 or higher on the math placement test Part A), or one of the following courses: MATH 101&102 or MATH 104 or MATH 127 or MATH 128 or MATH 131 or MATH 132. 4 credits.

COMPSCI 145: Representing, Storing, and Retrieving Information

Instructor(s): William Verts

An introductory course in the use of data in computer systems, a core course for the Information Technology certificate. Formats for representing text, numbers, sound, images, etc., as strings of bits. Equations of lines and curves, modeling of synthetic scenes (i.e., ray tracing), exploring the frequency domain and holography. Basic information theory, use and limitations of file compression and encryption. Structured databases and how to use them. Information retrieval in heterogenous environments such as the Web. XML as a language for defining new formats for representing data. Review of historical, pre-computer methods of information representation. Prerequisites: "Basic computer literacy", i.e., user-level familiarity with a modern operating system and some experience with application programs. Tier I math skills. Recommended for First Year and Sophomore Non-Majors. Prerequisite: R1. 3 credits.

COMPSCI 186: Using Data Structures

Instructor(s): Peter Klemperer, Marc Liberatore

COMPSCI 186 introduces foundational abstract data types and algorithms. The main focus is on the use of data structures in designing and developing programs to solve problems in a variety of domains. Specific topics include lists, sets, maps, graphs, stacks, queues, searching, and sorting. There will be weekly programming assignments, programming and written exercises in discussion sections, regular quizzes, and a cumulative final exam. This course is not a substitute for COMPSCI 187. If unsure of whether this course or COMPSCI 187 is more appropriate, contact instructor. Prerequisites: COMPSCI 121 and Basic Math Skills R1 (or a score of 20 or higher on the math placement test Part A), or one of the following courses: MATH 101&102 or MATH 104 or MATH 127 or MATH 128 or MATH 131 or MATH 132). 4 credits.

COMPSCI 187: Programming with Data Structures

Instructor(s): Gordon Anderson, Neena Thota

The course introduces and develops methods for designing and implementing abstract data types using the Java programming language. The main focus is on how to build and encapsulate data objects and their associated operations. Specific topics include linked structures, recursive structures and algorithms, binary trees, balanced trees, and hash tables. These topics are fundamental to programming and are essential to other courses in computer science. The course involves weekly programming assignments, in-class quizzes, discussion section exercises, and multiple exams. Prerequisites: COMPSCI 121 (or equivalent Java experience). A grade of B or better in COMPSCI 121 (or a grade of C or better in COMPSCI 186 (or COMPSCI 190D) is required for students enrolling in COMPSCI 187 and Basic Math Skills (R1). Basic Java language concepts are introduced quickly; if unsure of background, contact instructor. 4 credits.

COMPSCI 198C: Practicum - Introduction to the C Programming Language

Instructor(s): Meng-Chieh Chiu, J Moss, Timothy Richards

This practicum assumes general background and experience in computer programming (such as that provided by COMPSCI 121 or a similar introductory programming course) and some knowledge of data structures (such as that provided by COMPSCI 187). Content will include basic C data types, declarations, expressions, statements, and functions; simple use of macros; some common library calls (such as formatted input/output); basic pointer manipulation using linked lists; and introduction to using standard tools (gcc and make). 1 credit.

COMPSCI 220: Programming Methodology

Instructor(s): Meng-Chieh Chiu, Marius Minea, Cheryl Swanier

Development of individual skills necessary for designing, implementing, testing and modifying larger programs, including: use of integrated design environments, design strategies and patterns, testing, working with large code bases and libraries, code refactoring, and use of debuggers and tools for version control. There will be significant programming and a mid-term and final examination. Prerequisite: COMPSCI 187. 4 credits.

COMPSCI 230: Computer Systems Principles

Instructor(s): Matthew Rattigan, Timothy Richards

Large-scale software systems like Google - deployed over a world-wide network of hundreds of thousands of computers - have become a part of our lives. These are systems success stories - they are reliable, available ("up" nearly all the time), handle an unbelievable amount of load from users around the world, yet provide virtually instantaneous results. On the other hand, many computer systems don't perform nearly as well as Google - hence the now-clich? "the system is down." In this class, we study the scientific principles behind the construction of high-performance, scalable systems. The course begins with a discussion of C language, and moves up the stack from there to the features of modern architectures, assembly languages, and operating system services such as I/O and synchronization. Prerequisite: COMPSCI 187. 4 credits.

COMPSCI 240: Reasoning Under Uncertainty

Instructor(s): Shiting Lan, Zachary While

Development of mathematical reasoning skills for problems that involve uncertainty. Each concept will be illustrated by real-world examples and demonstrated through in-class and homework exercises. Counting and probability -- basic counting problems, probability definitions, mean, variance, binomial distribution, discrete random variables, continuous random variables, Markov and Chebyshev bounds, Laws of large number, and central limit theorem. Probabilistic reasoning -- conditional probability and odds, Bayes' Law, Markov Chains, Bayesian Network, Markov Decision Processes. Prerequisites: COMPSCI 187 and MATH 132. 4 credits.

COMPSCI 250: Introduction to Computation

Instructor(s): Hia Ghosh, Ghazaleh Parvini

Basic concepts of discrete mathematics useful to computer science: set theory, strings and formal languages, propositional and predicate calculus, relations and functions, basic number theory. Induction and recursion: interplay of inductive definition, inductive proof, and recursive algorithms. Graphs, trees, and search. Finite-state machines, regular languages, nondeterministic finite automata, Kleene's Theorem. Problem sets, 2 midterm exams, timed final. Prerequisite: COMPSCI 187 and MATH 132. 4 credits.

COMPSCI 311: Introduction to Algorithms

Instructor(s): Hung Le, Marius Minea

This course will introduce you to algorithms in a variety of areas of interest, such as sorting, searching, string-processing, and graph algorithms. You will learn to study the performance of various algorithms within a formal, mathematical framework. You will also learn how to design very efficient algorithms for many kinds of problems. There will be one or more programming assignments as well to help you relate the empirical performance of an algorithm to theoretical predictions. Mathematical experience (as provided by COMPSCI 250) is required. You should also be able to program in Java, C, or some other closely related language. Prerequisite: COMPSCI 187 and either COMPSCI 250 or MATH 455. 4 credits.

COMPSCI 320: Introduction to Software Engineering

Instructor(s): Gordon Anderson, David Fisher

In this course, students learn and gain practical experience with software engineering principles and techniques. The practical experience centers on a semester-long team project in which a software development project is carried through all the stages of the software life cycle. Topics in this course include requirements analysis, specification, design, abstraction, programming style, testing, maintenance, communication, teamwork, and software project management. Particular emphasis is placed on communication and negotiation skills and on designing and developing maintainable software. Use of computer required. Several written assignments, in-class presentations, and a term project. This course satisfies the IE Requirement. Prerequisite: COMPSCI 220. 4 credits.

COMPSCI 326: Web Programming

Instructor(s): Peter Klemperer

The web is arguably today's most important application platform. Web browsers run on practically every device, and even many phone applications are in fact web applications under the covers. This course will cover a broad range of client-side web technologies, including HTTP itself, HTML5, CSS, and JavaScript; it will additionally cover key concepts for the server side of web applications, including key value stores and SQL servers. This course will also cover key concepts and technologies including AJAX, JavaScript libraries (e.g., jQuery), and web security. This course is hands-on and heavily project-based; students will construct a substantial dynamic web application based on the concepts, technologies, and techniques presented during lectures and in readings. This course satisfies the IE Requirement. Prerequisites: COMPSCI 220 (OR COMPSCI 230), OR INFO 248 AND COMPSCI 186 (OR COMPSCI 187). Note: as the name web programming denotes, programming is a key component of this class. Previous background in JavaScript is strongly recommended. 4 credits.

COMPSCI 328: Mobile Health Sensing and Analytics

Instructor(s): Deepak Ganesan

In recent years, the ability to continuously monitor activities, health, and lifestyles of individuals using sensor technologies has reached unprecedented levels. The typical smartphone comes equipped with a plethora of sensors for monitoring activity, speech patterns, social interactions, and location. In addition, mobile accessories such as wearable wristbands and chestbands now enable routine and continuous monitoring of a host of physiological signals (e.g., heart rate, respiratory rate, skin Conductance, and others.). In conjunction, these sensors can enable higher-order inferences about more complex human activities/behavioral states (e.g., activity patterns, stress, sleep, etc.). Such ubiquitous sensing in daily life, referred to as mobile health sensing and monitoring, promises to revolutionize our understanding of human activities and health conditions. This course is an introduction to personal health sensing and monitoring through mobile phones and on-body sensors and addresses several aspects including mobile devices and applications for health, sensor data quality and reliability challenges, inference of key health assessments from sensor data including such as activity patterns, sleep patterns, or stress, sensor data visualization and feedback, and practical considerations such as battery lifetime. Prerequisite: COMPSCI 187 (OR INFO 248 AND COMPSCI 186). 3 credits.

COMPSCI 345: Practice and Applications of Data Management

Instructor(s): Jaime Davila

Computing has become data-driven, and databases are now at the heart of commercial applications. The purpose of this course is to provide a comprehensive introduction to the use of data management systems within the context of various applications. Some of the covered topics include application-driven database design, schema refinement, implementation of basic transactions, data on the web, and data visualization. The class will follow a flipped classroom model; students will be required to review materials in preparation for each week and they will work collaboratively on practical problems in class. This course counts as a CS Elective toward the COMPSCI major (BA/BS). Students who have completed COMPSCI 445 are not eligible to take this course without instructor permission. Prerequisite: COMPSCI 187 (OR INFO 248 AND COMPSCI 186). 3 credits.

COMPSCI 370: Introduction to Computer Vision

Instructor(s): Subhransu Maji

This introductory computer vision class will address fundamental questions about getting computers to "see" like humans. We investigate questions such as -What is the role of vision in intelligence? -How are images represented in a computer? -How can we write algorithms to recognize an object? -How can humans and computers "learn to see better" from experience? We will write a number of basic computer programs to do things like recognize handwritten characters, track objects in video, and understand the structure of images. Prerequisite: COMPSCI 240 or 383. 3 credits.

COMPSCI 377: Operating Systems

Instructor(s): Timothy Richards

In this course we examine the important problems in operating system design and implementation. The operating system provides a well-known, convenient, and efficient interface between user programs and the bare hardware of the computer on which they run. The operating system is responsible for allowing resources (e.g., disks, networks, and processors) to be shared, providing common services needed by many different programs (e.g., file service, the ability to start or stop processes, and access to the printer), and protecting individual programs from one another. The course will start with a brief historical perspective of the evolution of operating systems over the last fifty years, and then cover the major components of most operating systems. This discussion will cover the tradeoffs that can be made between performance and functionality during the design and implementation of an operating system. Particular emphasis will be given to three major OS subsystems: process management (processes, threads, CPU scheduling, synchronization, and deadlock), memory management (segmentation, paging, swapping), file systems, and operating system support for distributed systems. Prerequisites: COMPSCI 230. 4 credits.

COMPSCI 383: Artificial Intelligence

Instructor(s): Matthew Rattigan

The course explores key concepts underlying intelligent systems, which are increasingly deployed in consumer products and onlineservices. Topics includeproblem solving, state-space representation, heuristicsearch techniques, game playing, knowledge representation, logical reasoning, automated planning, reasoning underuncertainty, decision theory and machine learning. We will examine the use of these concepts in the design of intelligent agents in the context of severalapplications. Prerequisites: COMPSCI 220 (or COMPSCI 230) and COMPSCI 240 (or STAT 515). 3 credits.

COMPSCI 390A: Introduction to Machine Learning

Instructor(s): Philip Thomas

The course provides an introduction to machine learning algorithms and applications. Machine learning algorithms answer the question: "How can a computer improve its performance based on data and from its own experience?" The course is roughly divided into thirds: supervised learning (learning from labeled data), reinforcement learning (learning via trial and error), and real-world considerations like ethics, safety, and fairness. Specific topics include linear and non-linear regression, (stochastic) gradient descent, neural networks, backpropagation, classification, Markov decision processes, state-value and action-value functions, temporal difference learning, actor-critic algorithms, the reward prediction error hypothesis for dopamine, connectionism for philosophy of mind, and ethics, safety, and fairness considerations when applying machine learning to real-world problems. This course counts as a CS Elective toward the CS Major (BA/BS). Prerequisite: COMPSCI 220 (or COMPSCI 230), COMPSCI 240 (or STAT 515), and MATH 233. 3 credits.

COMPSCI 445: Information Systems

Instructor(s): Gerome Miklau

This course is an introduction to the efficient management of large-scale data. The course includes principles for representing information as structured data, query languages for analyzing and manipulating structured data, and core systems principles that enable efficient computation on large data sets. Classical relational database topics will be covered (data modeling, SQL, query optimization, concurrency control), as well as semi-structured data (XML, JSON), and distributed data processing paradigms (e.g. MapReduce and Spark). Additional application topics may include web application development, data integration, processing data streams, database security and privacy. Prerequisites: COMPSCI 220 (or 230) and COMPSCI 311 and COMPSCI 345. 3 credits.

COMPSCI 446: Search Engines

Instructor(s): David Fisher

This course provides an overview of the important issues in information retrieval, and how those issues affect the design and implementation of search engines. The course emphasizes the technology used in Web search engines, and the information retrieval theories and concepts that underlie all search applications. Mathematical experience (as provided by COMPSCI 240) is required. You should also be able to program in Java (or some other closely related language). Prerequisite: COMPSCI 240 or COMPSCI 383. 3 credits.

COMPSCI 453: Computer Networks

Instructor(s): Parviz Kermani

Introduction to computer communication networks and protocols. Fundamental concepts in the design and analysis of computer networks. Topics include: layered network architectures, networked applications, network programming interfaces, transport, congestion, routing, data link protocols, local area and data center networks, network security, and wireless networks. Examples drawn from the Internet (e.g., TCP, UDP, and IP) protocol suite. Homework assignments involve programming and written tasks. In Fall 2020, this course will be taught as a primarily online class, without in-class lectures, but with extensive on-line material including recorded video material, interactive exercises, and online discussion. There will be an optional weekly, one-hour in-class and on-line open discussion period. Prerequisites: Experience programming; COMPSCI 230 or COMPSCI 377. 3 credits.

COMPSCI 466: Applied Cryptography

Instructor(s): Adam O'Neill

This is an undergraduate-level introduction to cryptography. It is a theory course with a significant mathematical component. However, our viewpoint will be theory applied to practice in that we will aim to treat topics in a way of applied value. We will discuss cryptographic algorithms used in practice and how to reason about their security. More fundamentally, we will try to understand what security is in a rigorous way that allows us to follow sound principles and uncover design weaknesses. The primary topics are: blockciphers, pseudorandom functions, symmetric-key encryption schemes, hash functions, message authentication codes, public-key encryption schemes, digital signature schemes, and public-key infrastructures. Prerequisites: COMPSCI 311. 3 credits.

COMPSCI 490S: Software Entrepreneurship

Instructor(s): Neena Thota

This course is geared towards students interested in developing software that moves from early stage proof-of-concept ideas towards marketable products with societal benefit. The course leverages the expertise of the Entrepreneurs in Residence (EIR) of the Ventures @ CICS initiative at CICS. The course is grounded in Challenge Based Learning (CBL), an active, student-directed instructional framework that was developed by Apple Inc. and educators. This course counts as a CS Elective toward the CS major (BA or BS). Prerequisites: COMPSCi 320 (or COMPSCI 326). 3 credits.

COMPSCI 496G: Independent Study - Computer Networking Lab

Instructor(s): Parviz Kermani

In this course, students will learn how to put 'principles into practice,' in a hands-on-networking lab course. The course will cover router, switches and end-system labs in the areas of Single Segment IP Networks, Multiple Segment IP Networks and Static Routing, Dynamic Routing Protocols (RIP, OSPF and BGP), LAN switching, Transport Layer Protocols: UDP and TCP, NAT, DHCP, DNS, and SNMP. Students will also get engaged in evaluating power consumption of network components as an aid in the design of energy efficient (green) networks. This course counts as a CS Elective toward the CS major (BA/BS).

COMPSCI 497S: Special Topics - Scalable Web Systems

Instructor(s): Timothy Richards

The web has become a large and complex area for application development. Access to an abundance of open source languages, libraries, and frameworks has led to the quick and easy construction of a variety of applications with several moving parts working in coordination to present to the user the illusion of a single program. In reality, web applications are extremely difficult to get right. They involve a large collection of coordinated services, multiple databases, complicated user interfaces, security and performance issues, and ever changing 3rd party services, spread across physical and virtual machines. These complications are further stressed by the large number of concurrent users that access these applications every second. This course will investigate several well known web-based applications and the technology and software architecture used to scale these applications. We will also study a specific topic related to scalability in software design in the context of web application architecture. This course counts as a CS Elective toward the CS major (BA/BS) and as an Elective toward the INFORM major. Prerequisites: COMPSCI 326. 3 credits.

COMPSCI 501: Formal Language Theory

Instructor(s): David Barrington

Introduction to formal language theory. Topics include finite state languages, context-free languages, the relationship between language classes and formal machine models, the Turing Machine model of computation, theories of computability, resource-bounded models, and NP-completeness. Undergraduate Prerequisites: COMPSCI 311 or equivalent. It is recommended that students have a B- or better in 311 in order to attempt 501. 3 credits.

COMPSCI 508: Ethical Considerations in Computing

Instructor(s): Michelle Trim

This course considers an array of ethical issues in computing. Readings, class discussions, and guest speakers will cover topics related to avenues of development in artificial intelligence, privacy, identity, inclusiveness, environmental responsibility, internet censorship, network policy, plagiarism, intellectual property and others. All examples will be drawn from current and recent events with readings from a range of sources both journalistic and academic. Course assignments will have real world applications and offer students opportunities for developing their speaking and writing skills. Class discussions will be a vibrant component of the course. Open to Graduate students only. Undergraduate CS Majors with permission of instructor (counts as a CS Elective toward the BA or BS). 3 credits.

COMPSCI 514: Algorithms for Data Science

Instructor(s): Andrew McGregor

With the advent of social networks, ubiquitous sensors, and large-scale computational science, data scientists must deal with data that is massive in size, arrives at blinding speeds, and often must be processed within interactive or quasi-interactive time frames. This course studies the mathematical foundations of big data processing, developing algorithms and learning how to analyze them. We explore methods for sampling, sketching, and distributed processing of large scale databases, graphs, and data streams for purposes of scalable statistical description, querying, pattern mining, and learning. Undergraduate Prerequisites: COMPSCI 240 and COMPSCI 311. 3 credits

COMPSCI 520: Theory and Practice of Software Engineering

Instructor(s): Heather Conboy

Introduces students to the principal activities and state-of-the-art techniques involved in developing high-quality software systems. Topics include: requirements analysis, formal specification methods, software design, software testing and debugging, program analysis, and automated software engineering. Undergraduate Prerequisites: COMPSCI 320. 3 credits.

COMPSCI 528: Mobile and Ubiquitous Computing

Instructor(s): Tauhidur Rahman

This course will introduce students to the field of mobile sensing and ubiquitous computing (Ubicomp) an emerging CS research area that aims to design and develop disruptive technologies with hardware and software systems for real-world messy, noisy and mobile scenarios. The students will learn how to build mobile sensing systems, how to implement it with ubiquitous computing tools, how to make sense of the sensor data and model the target variables. Lastly, the students will learn how to critically think about problems in many application areas including Human-Computer Interaction, Medicine, Sustainability, Transportation, Psychology and Economics, and subsequently practice to find appropriate Ubicomp solutions. There is no exam in this course. The student is expected to work on different hands-on assignments, critique writing, and a final project. This course counts as a CS Elective toward the CS major (BA or BS). Undergraduate Prerequisites: COMPSCI 230 and COMPSCI 240. 3 credits.

COMPSCI 529: Software Engineering Project Management

Instructor(s): Gordon Anderson, David Fisher

The purpose of this course is to provide students with practical experience in the management of software development projects. Students in this course will gain this experience by serving as software development team technical managers for teams of software engineering students in COMPSCI 320. As project managers, the students in COMPSCI 529 will be responsible for: supervising and managing the work of teams of COMPSCI 320 students; interfacing with the other COMPSCI 529 students managing other teams in the course; interfacing with the course instructor, course TA, and course customer. COMPSCI 529 students will be assigned readings in software engineering project management to provide a theoretical basis for their work in this course. But the majority of work in the course will be related to the actual management of assigned development teams. As team managers, COMPSCI 529 students will set goals and schedules for their teams, track and report team progress, negotiate with leaders of other teams and the course customer, and evaluate the work of members of their teams. COMPSCI 529 course assignments may include: written team goals, plans and schedules; periodic reports on team progress; documentation of agreements reached with other team leaders and customers; evaluations of the applicability of theoretical papers to the work of this course. This course will meet at the same times and places as COMPSCI 320. Additional meetings with team members and other students in COMPSCI 529 are also expected to be arranged by mutual agreement. An additional one hour weekly meeting of all of the students in COMPSCI 529 is required. Enrollment in this course is only by permission of the instructor, and is restricted to students who have previously taken COMPSCI 320, and received a grade of A or A-. 3 credits.

COMPSCI 532: Systems for Data Science

Instructor(s): Hui Guan

In this course, students will learn the fundamentals behind large-scale systems in the context of data science. We will cover the issues involved in scaling up (to many processors) and out (to many nodes) parallelism in order to perform fast analyses on large datasets. These include locality and data representation, concurrency, distributed databases and systems, performance analysis and understanding. We will explore the details of existing and emerging data science platforms, including MapReduce-Hadoop, Spark, and more. Undergraduate Prerequisites: COMPSCI 311, COMPSCI 345, and COMPSCI 377. 3 credits.

COMPSCI 535: Computer Architecture

Instructor(s): Charles Weems

The structure of digital computers is studied at several levels, from the basic logic level, to the component level, to the system level. Topics include: the design of basic components such as arithmetic units and registers from logic gates; the organization of basic subsystems such as the memory and I/O subsystems; the interplay between hardware and software in a computer system; the von Neumann architecture and its performance enhancements such as cache memory, instruction and data pipelines, coprocessors, and parallelism. Weekly assignments, semester project, 2 hours exams, final. In-class participation exercises will replace the exams for Spring 2021. Undergraduate Prerequisites: COMPSCI 335. 3 credits.

COMPSCI 546: Applied Information Retrieval

Instructor(s): Hamed Zamani

This course will provide a "flipped classroom" experience, with both online lectures, programming exercises, and other activities as well as a weekly lecture/exploration/discussion section. This is a graduate level course intended to cover information retrieval and other information processing activities, from an applied perspective. There will be numerous programming projects, as well as short answer homeworks. It provides a richer technical follow on to COMPSCI 446 (Search Engines), for undergraduates interested in a deeper understanding of the technologies. It also provides a strong basis for continuing on with COMPSCI 646 (Information Retrieval), for those graduate students who are interested in a more complete theoretical coverage of the area. Topics will include: search engine construction (document acquisition, processing, indexing, and querying); learning to rank; information retrieval system performance evaluation; classification and clustering; other machine learning information processing tasks; and many more. Undergraduate prerequisites: COMPSCI 320 and either COMPSCI 383, COMPSCI 446, or COMPSCI 585. 3 credits.

COMPSCI 571: Data Visualization and Exploration

Instructor(s): Ali Sarvghad Batn Moghaddam

In this course, students will learn the fundamental algorithmic and design principles of visualizing and exploring complex data. The course will cover multiple aspects of data presentation including human perception and design theory; algorithms for exploring patterns in data such as topic modeling, clustering, and dimensionality reduction. A wide range of statistical graphics and information visualization techniques will be covered. We will explore numerical data, relational data, temporal data, spatial data, graphs and text. Hands-on projects will be based on Python or JavaScript with D3. This course counts as a CS Elective toward the CS major (BA or BS) and as an Elective toward the INFORM major. Undergraduate Prerequisites: COMPSCI 220, or COMPSCI 230, or COMPSCI 326. No prior knowledge of data visualization or exploration is assumed. 3 credits.

COMPSCI 574: Intelligent Visual Computing

Instructor(s): Evangelos Kalogerakis

Intelligent visual computing is an emerging new field that seeks to combine modern trends in machine learning, computer graphics, computer vision to intelligently process, analyze and synthesize 2D/3D visual data. The course will start by covering 2D image and 3D shape representations, classification and regression techniques, and the fundamentals of deep learning. The course will then provide an in-depth background on analysis and synthesis of images and shapes with deep learning, in particular convolutional neural networks, recurrent neural networks, memory networks, auto-encoders, adversarial networks, reinforcement learning methods, and probabilistic graphical models. Students will complete 5 programming assignments in Matlab/Octave and work on a course project related to visual computing with machine learning. This course counts as a CS Elective toward the CS major (BA/BS). Course was previously COMPSCI 590IV. Undergraduate Prerequisites:COMPSCI 311, COMPSCI 383, COMPSCI 373 (or COMPSCI 473). 3 credits.

COMPSCI 589: Machine Learning

Instructor(s): Justin Domke

This course will introduce core machine learning models and algorithms for classification, regression, clustering, and dimensionality reduction. On the theory side, the course will focus on understanding models and the relationships between them. On the applied side, the course will focus on effectively using machine learning methods to solve real-world problems with an emphasis on model selection, regularization, design of experiments, and presentation and interpretation of results. The course will also explore the use of machine learning methods across different computing contexts. Students will complete programming assignments and exams. Python is the required programming language for the course. Undergraduate Prerequisites: COMPSCI 383 and MATH 235. 3 credits.

COMPSCI 590A: System Defense and Test

Instructor(s): Parviz Kermani

This class trains students to detect and analyze weaknesses and vulnerabilities in target systems as a method of assessing the security of a system. We focus on tools and techniques that an attacker would employ but from the perspective of an ethical system administrator. Topics include tools and techniques for penetration testing and attacks, information gathering, social engineering, and defenses. Specific topics include malware, denial of service attacks, SQL injection, buffer overflow, session hijacking, and system hacking, network sniffing and scans, wireless encryption weaknesses and other WiFi issues, IDS/firewall evasion, metasploit tools, physical security, and setting up honeypots. Was INFOSEC 690S. This course counts as a CS Elective toward the CS major (BA or BS). Undergraduate Prerequisites: COMPSCI 460 (or COMPSCI 597N or COMPSCI 660). 3 credits.

COMPSCI 590J: Cyber Effects: Reverse Engineering, Exploit Analysis, and Capability Development

Instructor(s): Seth Landsman, Nicholas Merlino, Daniel Walters, Edward Walters, Adam Woodbury

This course covers a broad range of topics related to cyber security and operations. Our focus is on real world studies of reverse engineering, exploit analysis, and capability development within the context of computer network operations and attack. The course has an emphasis on hands-on exercises and projects. Topics covered include computer architecture and assembly language, principles of embedded security, the essentials of exploit development and analysis (including using industry standard tools such as Ghidra, and utilizing computer security databases such as CVE), and discussion of real-world events and techniques. This course counts as a CS Elective toward the CS Major (BA or BS). Prerequisite: COMPSCI 230 (or ECE 322) and COMPSCI 460 (or ECE 371). 3 credits.

COMPSCI 590M: Introduction to Simulation

Instructor(s): Peter Haas

How can we use computers to design systems and, more generally, make decisions, in the face of complexity and uncertainty? Simulation techniques apply the power of the computer to study complex stochastic systems when analytical or numerical techniques do not suffice. It is the most frequently used methodology for the design and evaluation of computer, telecommunication, manufacturing, healthcare, financial, and transportation systems, to name just a few application areas. Simulation is an interdisciplinary subject, incorporating ideas and techniques from computer science, probability, statistics, optimization, and number theory. Simulation models, which embody deep domain expertise, can effectively complement machine-learning approaches. This course will provide the student with a hands-on introduction into this fascinating and useful subject. This course counts as a CS Elective toward the CS major (BA/BS). Undergraduate Prerequisite: COMPSCI 187 and STAT 515. 3 credits.

COMPSCI 590W: Health Informatics and Data Science

Instructor(s): Sunghoon Lee, Anthony Nunes

This course introduces the discipline of health informatics and data science to prepare our students as forerunners of the future of digital health care systems. Followed by an overview of the health informatics industry, it covers a broad range of introductory topics related to the context of health care systems, such as the structure of current health care systems, various types of health data, theoretical framework and practice use of quantitative analytic methodologies, and ethics. More specifically, this course will teach important health informatics technologies and standards, such as electronic health records, medical claims data, imaging/free-text clinical notes, patient-reported outcomes, traditional and machine learning-based analytic algorithms, data visualization, and clinical research and experimental procedures. This course counts as a CS Elective for the CS Major (BA or BS) and as an Elective for the INFORM Major. Undergraduate Prerequisite: COMPSCI 240 or STATISTCS 515. 3 credits.

COMPSCI 591NR: Seminar - Neural Networks: from Neuroscience to the Forefront of AI

Instructor(s): Hava Siegelmann

This is a project based course, focusing on the science connecting the field of neural network with human brain mechanism, as well as advancements which are at the front of the field. We start by introducing a few neural network architectures with their learning paradigms, including deep feedforward and recurrent networks, Hopfield s memory, and Kohonen s self organizing maps. We continue by building on the top of these: clique structures and brain-like updatable architectures, explainable AI, combining symbolic with subsymbolic into one strong AI, robust AI, deep fake applications, and up to lifelong learning. The course is project based with grades based on active class participation, presenting non-trivial topics, research project that will be done during the semester, and research paper written based on this work. I ll assist students to get their research submitted to publications, if their work will reach high level. Students in 591NR will be able to run simpler projects. COMPARISON BETWEEN COMPSCI 682 AND 591NR/691NR: 682 teaches the engineering techniques necessary to train current neural networks. 591NR/691NR provides far larger view of the field, focusing on the science both relation with human and natural intelligence, and on the advancements which are in the forefront of the neural networks field. 3 credits. This course counts as a CS Elective toward the CS major (BA or BS). Undergraduate Prerequisites: COMPSCI 311. 3 credits.

COMPSCI 596E: Independent Study - Machine Learning Applied to Child Rescue

Instructor(s): Jagath Jai Kumar

Students will work collaboratively to construct a production-grade image processing system. 3 credits.

COMPSCI 601: Computation Theory

Instructor(s): Neil Immerman

An in-depth introduction to the main models and concepts of the theory of computation, including: Computability: what problems can be solved in principle; Complexity: what problems can be solved in a given amount of time, space, parallel time; Logic: how do formal specification and proof mirror other forms of computation? Students will learn to go from a concrete problem to a mathematical model; and, after proving things about the mathematical model, to correctly interpret what they have learned about the concrete problem. Prerequisites: an undergraduate course in automata theory and formal languages such as COMPSCI 501 or permission of instructor. Course requirements: biweekly problem sets, midterm and final. Also open to qualified undergraduates. 3 credits.

COMPSCI 603: Robotics

Instructor(s): Roderic Grupen

This course is intended to serve as an advanced overview of robotics spanning the complete autonomy loop: perception, planning, and control. We will study the theory, algorithms, andefficient implementations related to these topics, with a focus on open discussions for how to do research to go beyond the state of the art. Students will gain hands-on experience in implementing, and extending such algorithms using real robot data, as well as simulations. 3 credits.

COMPSCI 611: Advanced Algorithms

Instructor(s): Ramesh Sitaraman

Principles underlying the design and analysis of efficient algorithms. Topics to be covered include: divide-and-conquer algorithms, graph algorithms, matroids and greedy algorithms, randomized algorithms, NP-completeness, approximation algorithms, linear programming. Prerequisites: The mathematical maturity expected of incoming Computer Science graduate students, knowledge of algorithms at the level of COMPSCI 311. 3 credits.

COMPSCI 645: Database Design and Implementation

Instructor(s): Yanlei Diao

This course covers the design and implementation of traditional relational database systems as well as advanced data management systems. The course will treat fundamental principles of databases such as the relational model, conceptual design, and schema refinement. We will also cover core database implementation issues including storage and indexing, query processing and optimization, and transaction management. Additionally, we will address challenges in modern networked information systems, including data mining, provenance, data stream management, and probabilistic databases. 3 credits.

COMPSCI 674: Intelligent Visual Computing

Instructor(s): Evangelos Kalogerakis

Intelligent visual computing is an emerging new field that seeks to combine modern trends in machine learning, computer graphics, computer vision to intelligently process, analyze and synthesize 2D/3D visual data. The course will start by covering 2D image and 3D shape representations, classification and regression techniques, and the fundamentals of deep learning. The course will then provide an in-depth background on analysis and synthesis of images and shapes with deep learning, in particular convolutional neural networks, recurrent neural networks, memory networks, auto-encoders, adversarial networks, reinforcement learning methods, and probabilistic graphical models. Students will complete 5 programming assignments in Matlab/Octave and work on a course project related to visual computing with machine learning. Course was previously COMPSCI 690IV. 3 credits.

COMPSCI 677: Distributed and Operating Systems

Instructor(s): Marco Serafini

This course provides an in-depth examination of the principles of distributed systems in general, and distributed operating systems in particular. Covered topics include processes and threads, concurrent programming, distributed interprocess communication, distributed process scheduling, virtualization, distributed file systems, security in distributed systems, distributed middleware and applications such as the web and peer-to-peer systems. Some coverage of operating system principles for multiprocessors will also be included. A brief overview of advanced topics such as multimedia operating systems and mobile computing will be provided, time permitting. Prerequisites: Students should be able to easily program in a high-level language such as C, have had a course on data structures, be familiar with elements of computer architecture and have had previous exposure to the operating system concepts of processes, virtual memory, and scheduling. A previous course on uniprocessor operating systems (e.g., COMPSCI 377) will be helpful but not required. 3 credits.

COMPSCI 683: Artificial Intelligence

Instructor(s): Yair Zick

In-depth introduction to Artificial Intelligence focusing on techniques that allow intelligent systems to reason effectively with uncertain information and cope limited computational resources. Topics include: problem-solving using search, heuristic search techniques, constraint satisfaction, local search, abstraction and hierarchical search, resource-bounded search techniques, principles of knowledge representation and reasoning, logical inference, reasoning under uncertainty, belief networks, decision theoretic reasoning, representing and reasoning about preferences, planning under uncertainty using Markov decision processes, multi-agent systems, and computational models of bounded rationality. 3 credits.

COMPSCI 685: Advanced Natural Language Processing

Instructor(s): Brendan O'Connor

This course covers a broad range of advanced level topics in natural language processing. It is intended for graduate students in computer science who have familiarity with machine learning fundamentals, and previous course or research experience in natural language processing. It may also be appropriate for computationally sophisticated students in linguistics and related areas. Topics include probabilistic models of language, computationally tractable linguistic representations for syntax and semantics, neural network models for language, and selected topics in discourse and text mining. After completing the course, students should be able to read and evaluate current NLP research papers. Coursework includes a research literature review, homework assignments, and a final project. 3 credits.

COMPSCI 688: Probabilistic Graphical Models

Instructor(s): Justin Domke

Probabilistic graphical models are an intuitive visual language for describing the structure of joint probability distributions using graphs. They enable the compact representation and manipulation of exponentially large probability distributions, which allows them to efficiently manage the uncertainty and partial observability that commonly occur in real-world problems. As a result, graphical models have become invaluable tools in a wide range of areas from computer vision and sensor networks to natural language processing and computational biology. The aim of this course is to develop the knowledge and skills necessary to effectively design, implement and apply these models to solve real problems. The course will cover (a) Bayesian and Markov networks and their dynamic and relational extensions; (b) exact and approximate inference methods; (c) estimation of both the parameters and structure of graphical models. Although the course is listed as a seminar, it will be taught as a regular lecture course with programming assignments and exams. Students entering the class should have good programming skills and knowledge of algorithms. Undergraduate-level knowledge of probability and statistics is recommended. 3 credits.

COMPSCI 690A: Advanced Methods in HCI

Instructor(s): Narges Mahyar

This is an advanced course in HCI. This course will provide a deeper treatment of some topics that are typically found in an undergraduate HCI course. For example, design methodologies, evaluation methodologies (both quantitative and qualitative), human information processing, cognition, and perception. This course will also introduce students to research frontiers in HCI. The course will cover topics of Universal Usability, CSCW, Digital Civics and fundamentals of designing interactive technology for people. 3 credits.

COMPSCI 690OP: Optimization in Computer Science

Instructor(s): Madalina Fiterau Brostean

Much recent work in computer science in a variety of areas, from game theory to machine learning and sensor networks, exploits sophisticated methods of optimization. This course is intended to give students an in-depth background in both the foundations as well as some recent trends in the theory and practice of optimization for computer science. There is currently no course in the department that covers these topics, and yet it is critical to a large number of research projects done within the department. 3 credits.

COMPSCI 690W: Advanced Wireless Networking and Sensing in IoT

Instructor(s): Jie Xiong

Nowadays, wireless technologies (such as 802.11 Wi-Fi) do not only provide data service but also cater to diverse applicationsincluding indoor localization, userauthentication, contactless activity sensing,vital sign monitoring, gesture recognition,sleep sensing, wireless charging, etc.This course introduces the students with fundamentals in wireless networking and also the state-of-the-artsensing applications in the Era of Internet-Of-Things. Wireless sensing is also a cutting edge research area which involveswireless communication, signal processing, human computer interaction, machine learning and also hardware prototyping. 3 credits.

COMPSCI 691DD: Seminar - Research Methods in Empirical Computer Science

Instructor(s): David Jensen

This course introduces graduate and undergraduate students to concepts, practices, and tools for conducting effective research. Students will learn basic methods for activities such as reading technical papers, selecting research topics, devising research questions, planning research, analyzing experimental results, modeling and simulation of computational phenomena, and synthesizing broader theories. The course is structured around three activities: lectures on basic concepts of research strategy and techniques, discussions of technical papers, and preparation and review of written assignments. Significant reading, reviewing, and writing is required. Students are expected to participate actively in class discussions and to provide meaningful comments on the work of other students. For PhD students, this course helps accelerate their current and future research. For MS students, this course provides a grounding in research methods that will aid entry into research-oriented industrial positions and provide information about continuing to PhD studies. For undergraduates considering graduate studies, this course will help inform and accelerate that direction. This course can be used to satisfy the 499Y requirement for Departmental and Multidisciplinary Honors students whose theses or projects have a substantial empirical component. Approval of the Computer Science Honors Program Director is required prior to registering. 3 credits.

COMPSCI 691NR: Seminar - Neural Networks: from Neuroscience to the Forefront of AI

Instructor(s): Hava Siegelmann

This course covers various aspect of neural networks, from fundamentals to advanced concepts. Topics include feed-forward neural networks, kernel-based approaches, deep learning, recurrent neural networks, Hopfield networks, Kohonen Self-Organized Maps, Grossberg Adaptive Resonance Theory, Helmholtz machines, MDL, Symbolic neural nets, and space-time neurodynamics, with links to computational neuroscience. Theoretical foundations of supervised, unsupervised, and reinforcement learning are described. Advanced machine learning applications include image processing, speech recognition, game playing, time series prediction, and neurocontrol. The course is self-contained, preliminary knowledge of neural networks basics is useful but not required. Students at the 691 level are expected to complete a project implementing a neural network to solve a pattern recognition task, while students at the 591 level will be evaluated based on conceptual designs. COMPARISON BETWEEN COMPSCI 682 AND 591NR/691NR: 682 teaches the engineering techniques necessary to train modern neural network architectures to achieve competitive performance on problems such as image classification and sequence prediction. This includes optimization techniques, hyperparameter setting, and debugging techniques for large neural networks. There is less emphasis on theory. 591NR/691NR introduces a broader array of neural network models beyond feed-forward networks (such as Kohonen nets, Hopfield nets, Boltzmann machines, Adaptive Resonance Theory) and analyzes some of their theoretical properties, such as guaranteed convergence and stability. In general, there is more emphasis on theoretical properties, and less on engineering issues. 3 credits.

COMPSCI 692B: Seminar - Online Learning and Inference for Distributed Systems

Instructor(s): Donald Towsley

In this seminar, students will read, present, and discuss research papers on recent and advanced topics in online optimization and learning and their applications to distributed systems. Students are expected to lead one or more discussions throughout the semester. This seminar covers recent research ranging from online algorithms, online learning in full and bandit feedback settings, to distributed estimation and inference, and their applications in distributed systems. Participants will be expected to read up to two papers per week. One or more attendees will be responsible for presenting a summary of each paper and help lead the discussion of the paper. When possible, researchers will be asked to relate their work to the papers. 1 credit.

COMPSCI 696DS: Independent Study - Data Science

Instructor(s): Thomas Bernardin, Andrew McCallum

The goal of this course is to provide Professional Masters students withindustry mentorship and real-world data science training.Beyond-classroom educational opportunities are an excellent way to gain practical experience on a substantial project, to learn advanced skills, to collaborate with a professional PhD researcher, to form a connection to a data science company, and to work in a team with other graduate students.Industry partners propose semester-long data science projects.Students form three-to-five-person teams, each of which work on one project throughout the semester, under the guidance of their industry mentor, additional PhD student mentors, and the course faculty instructor.Furthermore, in weekly class meetings all students receive professional development education, data science hardware and software infrastructure training, data science research presentations, and career advice.Student teams gain valuable oral presentation experience and feedback by regularly presenting their work-in-progress, as well as a final public presentation of their project at the end of the semester.Advantages of these industry relationships often include access to rich industry-scale data, learning about real-world problems, and making industry connections useful for the future. Prerequisites: Enrollment in the CICS Professional Masters Program; submission of the pre-application to the Data Science Concentration; by the end of previous semester have completed at least two of the Data Science core requirements; a grade point average of 3.0 or higher. 3 credits.

COMPSCI 697M: Special Topics - Fixing Social Media

Instructor(s): Ethan Zuckerman

Over the past decade, user-generated participatory media social media has emerged as the dominant model for content of the Internet. From Facebook to Twitter, YouTube to Wikipedia, content created by non-professionals and circulated for commercial and non-commercial motives underpins seven of the top 10 websites in the US, and has become an increasingly important component of the news ecosystem. While social media was initially hailed as a powerful tool for broadening civic participation, many problems have emerged with the rise of the medium, from questions of whether social media usage is bad for our individual mental health, to whether the fabric of our democracy is being damaged by disinformation, fragmentation and hyperpolarization. As legislators look to regulate these platforms and commentators propose shutting them down entirely, this course looks for an alternative: affirmative visions of social media that are good for individuals and society, which we could work towards building. This class examines possible problems with existing modes of social media, discusses ways in which social media could be a benefit to individuals and societies, develops case studies of successful and healthy online communities, and ultimately designs and builds tools to improve existing social media systems or replace them with novel models. Students will write reflectively about weekly readings and discussions and participate in multi-week projects, ultimately building teams to work on final projects. Meets with COMM 697M and SPP 697M. 3 credits.

COMPSCI 701: Advanced Topics in Computer Science

Advanced Topics in Computer Science Master's Project: Advanced research project in Computer Science. The 3 credit option is for the second semester of a two semester sequence, 701Y followed by 701. The 6 credit option is for a project that will be begun and completed within the same semester. 6 credits.

COMPSCI 701Y: Advanced Topics in Computer Science (1st Semester)

Advanced Topics in Computer Science Master's Project: Advanced research project in Computer Science. Indicates the first semester of a two-semester sequence, 701Y (3 credits) followed by 701 (3 credits), with grade for both assigned at the end. 3 credits.

COMPSCI 791U: Seminar - Advanced Topics in Information Retrieval

Instructor(s): Razieh Rahimi

A seminar in which students will read, present, and discuss research papers on recent and advanced topics in Information Retrieval. Students are expected to lead one or more discussions throughout the semester. This seminar covers recent research in Information Retrieval including neural IR, explainability and interpretability, conversational search, product and multimedia recommendation, and other research that is published within the past few years. Participants will be expected to read up to two papers per week. One or more attendees will be responsible for presenting a 10-15 minute summary of each paper and help lead discussion of the papers. When possible, researchers will be asked to relate their work to the papers. A prerequisite for this seminar is COMPSCI 646, the Information Retrieval course, or its equivalent. Contact Razieh Rahimi (rahimi@cs.umass.edu) if you are uncertain whether you have the necessary background. A project option is available for 3 credits with permission of instructor. 1 or 3 credits.

COMPSCI 891M: Seminar - Theory of Computation

Instructor(s): Neil Immerman

The theory seminar is a weekly meeting in which topics of interest in the theory of computation - broadly construed - are presented. This is sometimes new research by visitors or local people. It is sometimes work in progress, and it is sometimes recent material of others that some of us present in order to learn and share. This is a one-credit seminar which may be taken repeatedly for credit up to six times. 1 credit.

COMPSCI H250: Honors Colloquium for Introduction to Computation

Instructor(s): David Barrington

This course is an honors colloquium for COMPSCI 250. We will have weekly readings from Godel, Esher, Bach: An Eternal Golden Braid by Douglas Hofstadter. This book contains mathematical problems related to the main course material, and presents some of the same topics as well as others. Students will report on their reading in the seminar, and we will discuss connections between the book and the CS 250 material. Each student will make an oral presentation on a topic of their choice at the end of the term. Prerequisites: Students must be enrolled in or have completed COMPSCI 250. 1 credit.

COMPSCI H311: Honors Colloquium for Introduction to Algorithms

Instructor(s): Marius Minea

The design and analysis of efficient algorithms for important computational problems. Emphasis on the relationships between algorithms and data structures and on measures of algorithmic efficiency. Advanced graph algorithms, dynamic programming applications, NP-completeness and space complexity, approximation and randomized algorithms. Experimental analysis of algorithms also emphasized. Use of computer required. Prerequisites: Students must be enrolled in or have completed COMPSCI 311. 1 credit.

COMPSCI H446: Honors Colloquium for Search Engines

Instructor(s): David Fisher

This course is an honors colloquium for COMPSCI 446. Students will explore and discuss topics from the 446 curriculum in greater detail. Students will implement an expanded programming project, such as implementing the Inference Network retrieval model, and produce a final report on that project. Prerequisites: Students must be enrolled in or have completed COMPSCI 446. 1 credit.

INFO 150: A Mathematical Foundation for Informatics

Instructor(s): Mohammadhassan Hajiesmaili

Mathematical techniques useful in the study of computing and information processing. The mathematical method of definition and proof. Sets, functions, and relations. Combinatorics, probability and probabilistic reasoning. Graphs and trees as models of data and of computational processes. Prerequisite: R1 math skills recommended. Not intended for Computer Science majors students interested in a majors-level treatment of this material should see COMPSCI 240 and 250 (or MATH 455). 3 credits.

INFO 197P: Special Topics - Programming in Python for Data Science

Instructor(s): Emma Anderson

A brief introduction to the Python programming language for students with a working knowledge of basic programming concepts. Class is comprised of discussion and hands-on activities, as well as two projects completed outside of class.Topics include Python data structures, data analysis tools, and an overview of machine learning libraries. Intended for Informatics majors. Prerequisite: COMPSCI 121. 1 credit.

INFO 248: Introduction to Data Science

Instructor(s): Gordon Anderson

This course is an introduction to the concepts and skills involved with the collection, management, analysis, and presentation of data sets and the data products that result from the work of data scientists. Privacy, algorithmic bias and ethical issues are also discussed. Students will work with data from the financial, epidemiological, educational, and other domains. The course provides examples of real-world data that students work with using various software tools. This course consists of two lecture meetings and one lab meeting per week. Readings will be assigned as preparation for each class meeting. A semester project will be assigned. Students work in pairs to develop their project over the semester. The project provides students with an opportunity to work collaboratively to explore the topics in more depth in a specialized domain. A midterm and final exam will be given. Grades are determined by a combination of scores on lab activities, projects, and exam scores. Software: all software is freely available. Course was previously INFO 397F. Prerequisites: COMPSCI 121 and PSYCH 240 (or OIM 240, or STAT 240, or STAT 515, or RES ECON 212, or SOCIOL 212). 4 credits.

INFO 490C: Introduction to Social and Cultural Analytics

Instructor(s): Laure Thompson

This course introduces the use of computational methods for studying culture and society. Through this course, students will learn how to transform textual and visual material into data; how to explore and analyze said data using machine learning and statistical models as both quantitative and qualitative tools; and how these computational methods are applied within the humanities and social sciences. This course counts as an Elective toward the INFORM major. Prerequisite: INFO 248. 3 credits.

INFO 690C: Introducation to Social and Cultural Anayltics

Instructor(s): Laure Thompson

This course introduces the use of computational methods for studying culture and society. We will learn how to transform textual and visual material into data, and how we can explore and analyze this data using machine learning and statistical models as both quantitative and qualitative tools. We will also survey and discuss how these methods are applied within the humanities and social sciences, as well as reflect on the challenges, limitations, and ethical issues that arise in the computational study of culture and society. 3 credits.

Last automatic generation: 2/22/2021 at 1:49:33 PM